nlm.cu 23.2 KB
Newer Older
wester committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

wester committed
43
#if !defined CUDA_DISABLER
wester committed
44

wester committed
45 46 47 48 49 50 51 52
#include "opencv2/gpu/device/common.hpp"
#include "opencv2/gpu/device/vec_traits.hpp"
#include "opencv2/gpu/device/vec_math.hpp"
#include "opencv2/gpu/device/functional.hpp"
#include "opencv2/gpu/device/reduce.hpp"
#include "opencv2/gpu/device/border_interpolate.hpp"

using namespace cv::gpu;
wester committed
53 54 55 56 57 58 59

typedef unsigned char uchar;
typedef unsigned short ushort;

//////////////////////////////////////////////////////////////////////////////////
//// Non Local Means Denosing

wester committed
60
namespace cv { namespace gpu { namespace device
wester committed
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
{
    namespace imgproc
    {
        __device__ __forceinline__ float norm2(const float& v) { return v*v; }
        __device__ __forceinline__ float norm2(const float2& v) { return v.x*v.x + v.y*v.y; }
        __device__ __forceinline__ float norm2(const float3& v) { return v.x*v.x + v.y*v.y + v.z*v.z; }
        __device__ __forceinline__ float norm2(const float4& v) { return v.x*v.x + v.y*v.y + v.z*v.z  + v.w*v.w; }

        template<typename T, typename B>
        __global__ void nlm_kernel(const PtrStep<T> src, PtrStepSz<T> dst, const B b, int search_radius, int block_radius, float noise_mult)
        {
            typedef typename TypeVec<float, VecTraits<T>::cn>::vec_type value_type;

            const int i = blockDim.y * blockIdx.y + threadIdx.y;
            const int j = blockDim.x * blockIdx.x + threadIdx.x;

            if (j >= dst.cols || i >= dst.rows)
                return;

            int bsize = search_radius + block_radius;
            int search_window = 2 * search_radius + 1;
            float minus_search_window2_inv = -1.f/(search_window * search_window);

            value_type sum1 = VecTraits<value_type>::all(0);
            float sum2 = 0.f;

            if (j - bsize >= 0 && j + bsize < dst.cols && i - bsize >= 0 && i + bsize < dst.rows)
            {
                for(float y = -search_radius; y <= search_radius; ++y)
                    for(float x = -search_radius; x <= search_radius; ++x)
                    {
                        float dist2 = 0;
                        for(float ty = -block_radius; ty <= block_radius; ++ty)
                            for(float tx = -block_radius; tx <= block_radius; ++tx)
                            {
                                value_type bv = saturate_cast<value_type>(src(i + y + ty, j + x + tx));
                                value_type av = saturate_cast<value_type>(src(i +     ty, j +     tx));

                                dist2 += norm2(av - bv);
                            }

                        float w = __expf(dist2 * noise_mult + (x * x + y * y) * minus_search_window2_inv);

                        /*if (i == 255 && j == 255)
                            printf("%f %f\n", w, dist2 * minus_h2_inv + (x * x + y * y) * minus_search_window2_inv);*/

                        sum1 = sum1 + w * saturate_cast<value_type>(src(i + y, j + x));
                        sum2 += w;
                    }
            }
            else
            {
                for(float y = -search_radius; y <= search_radius; ++y)
                    for(float x = -search_radius; x <= search_radius; ++x)
                    {
                        float dist2 = 0;
                        for(float ty = -block_radius; ty <= block_radius; ++ty)
                            for(float tx = -block_radius; tx <= block_radius; ++tx)
                            {
                                value_type bv = saturate_cast<value_type>(b.at(i + y + ty, j + x + tx, src));
                                value_type av = saturate_cast<value_type>(b.at(i +     ty, j +     tx, src));
                                dist2 += norm2(av - bv);
                            }

                        float w = __expf(dist2 * noise_mult + (x * x + y * y) * minus_search_window2_inv);

                        sum1 = sum1 + w * saturate_cast<value_type>(b.at(i + y, j + x, src));
                        sum2 += w;
                    }

            }

            dst(i, j) = saturate_cast<T>(sum1 / sum2);

        }

        template<typename T, template <typename> class B>
        void nlm_caller(const PtrStepSzb src, PtrStepSzb dst, int search_radius, int block_radius, float h, cudaStream_t stream)
        {
            dim3 block (32, 8);
            dim3 grid (divUp (src.cols, block.x), divUp (src.rows, block.y));

            B<T> b(src.rows, src.cols);

            int block_window = 2 * block_radius + 1;
            float minus_h2_inv = -1.f/(h * h * VecTraits<T>::cn);
            float noise_mult = minus_h2_inv/(block_window * block_window);

            cudaSafeCall( cudaFuncSetCacheConfig (nlm_kernel<T, B<T> >, cudaFuncCachePreferL1) );
            nlm_kernel<<<grid, block>>>((PtrStepSz<T>)src, (PtrStepSz<T>)dst, b, search_radius, block_radius, noise_mult);
            cudaSafeCall ( cudaGetLastError () );

            if (stream == 0)
                cudaSafeCall( cudaDeviceSynchronize() );
        }

        template<typename T>
        void nlm_bruteforce_gpu(const PtrStepSzb& src, PtrStepSzb dst, int search_radius, int block_radius, float h, int borderMode, cudaStream_t stream)
        {
            typedef void (*func_t)(const PtrStepSzb src, PtrStepSzb dst, int search_radius, int block_radius, float h, cudaStream_t stream);

            static func_t funcs[] =
            {
wester committed
164
                nlm_caller<T, BrdReflect101>,
wester committed
165
                nlm_caller<T, BrdReplicate>,
wester committed
166
                nlm_caller<T, BrdConstant>,
wester committed
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
                nlm_caller<T, BrdReflect>,
                nlm_caller<T, BrdWrap>,
            };
            funcs[borderMode](src, dst, search_radius, block_radius, h, stream);
        }

        template void nlm_bruteforce_gpu<uchar>(const PtrStepSzb&, PtrStepSzb, int, int, float, int, cudaStream_t);
        template void nlm_bruteforce_gpu<uchar2>(const PtrStepSzb&, PtrStepSzb, int, int, float, int, cudaStream_t);
        template void nlm_bruteforce_gpu<uchar3>(const PtrStepSzb&, PtrStepSzb, int, int, float, int, cudaStream_t);
    }
}}}

//////////////////////////////////////////////////////////////////////////////////
//// Non Local Means Denosing (fast approximate version)

wester committed
182
namespace cv { namespace gpu { namespace device
wester committed
183 184 185 186 187 188 189 190 191 192
{
    namespace imgproc
    {

        template <int cn> struct Unroll;
        template <> struct Unroll<1>
        {
            template <int BLOCK_SIZE>
            static __device__ __forceinline__ thrust::tuple<volatile float*, volatile float*> smem_tuple(float* smem)
            {
wester committed
193
                return cv::gpu::device::smem_tuple(smem, smem + BLOCK_SIZE);
wester committed
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
            }

            static __device__ __forceinline__ thrust::tuple<float&, float&> tie(float& val1, float& val2)
            {
                return thrust::tie(val1, val2);
            }

            static __device__ __forceinline__ const thrust::tuple<plus<float>, plus<float> > op()
            {
                plus<float> op;
                return thrust::make_tuple(op, op);
            }
        };
        template <> struct Unroll<2>
        {
            template <int BLOCK_SIZE>
            static __device__ __forceinline__ thrust::tuple<volatile float*, volatile float*, volatile float*> smem_tuple(float* smem)
            {
wester committed
212
                return cv::gpu::device::smem_tuple(smem, smem + BLOCK_SIZE, smem + 2 * BLOCK_SIZE);
wester committed
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
            }

            static __device__ __forceinline__ thrust::tuple<float&, float&, float&> tie(float& val1, float2& val2)
            {
                return thrust::tie(val1, val2.x, val2.y);
            }

            static __device__ __forceinline__ const thrust::tuple<plus<float>, plus<float>, plus<float> > op()
            {
                plus<float> op;
                return thrust::make_tuple(op, op, op);
            }
        };
        template <> struct Unroll<3>
        {
            template <int BLOCK_SIZE>
            static __device__ __forceinline__ thrust::tuple<volatile float*, volatile float*, volatile float*, volatile float*> smem_tuple(float* smem)
            {
wester committed
231
                return cv::gpu::device::smem_tuple(smem, smem + BLOCK_SIZE, smem + 2 * BLOCK_SIZE, smem + 3 * BLOCK_SIZE);
wester committed
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
            }

            static __device__ __forceinline__ thrust::tuple<float&, float&, float&, float&> tie(float& val1, float3& val2)
            {
                return thrust::tie(val1, val2.x, val2.y, val2.z);
            }

            static __device__ __forceinline__ const thrust::tuple<plus<float>, plus<float>, plus<float>, plus<float> > op()
            {
                plus<float> op;
                return thrust::make_tuple(op, op, op, op);
            }
        };
        template <> struct Unroll<4>
        {
            template <int BLOCK_SIZE>
            static __device__ __forceinline__ thrust::tuple<volatile float*, volatile float*, volatile float*, volatile float*, volatile float*> smem_tuple(float* smem)
            {
wester committed
250
                return cv::gpu::device::smem_tuple(smem, smem + BLOCK_SIZE, smem + 2 * BLOCK_SIZE, smem + 3 * BLOCK_SIZE, smem + 4 * BLOCK_SIZE);
wester committed
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566
            }

            static __device__ __forceinline__ thrust::tuple<float&, float&, float&, float&, float&> tie(float& val1, float4& val2)
            {
                return thrust::tie(val1, val2.x, val2.y, val2.z, val2.w);
            }

            static __device__ __forceinline__ const thrust::tuple<plus<float>, plus<float>, plus<float>, plus<float>, plus<float> > op()
            {
                plus<float> op;
                return thrust::make_tuple(op, op, op, op, op);
            }
        };

        __device__ __forceinline__ int calcDist(const uchar&  a, const uchar&  b) { return (a-b)*(a-b); }
        __device__ __forceinline__ int calcDist(const uchar2& a, const uchar2& b) { return (a.x-b.x)*(a.x-b.x) + (a.y-b.y)*(a.y-b.y); }
        __device__ __forceinline__ int calcDist(const uchar3& a, const uchar3& b) { return (a.x-b.x)*(a.x-b.x) + (a.y-b.y)*(a.y-b.y) + (a.z-b.z)*(a.z-b.z); }

        template <class T> struct FastNonLocalMeans
        {
            enum
            {
                CTA_SIZE = 128,

                TILE_COLS = 128,
                TILE_ROWS = 32,

                STRIDE = CTA_SIZE
            };

            struct plus
            {
                __device__ __forceinline__ float operator()(float v1, float v2) const { return v1 + v2; }
            };

            int search_radius;
            int block_radius;

            int search_window;
            int block_window;
            float minus_h2_inv;

            FastNonLocalMeans(int search_window_, int block_window_, float h) : search_radius(search_window_/2), block_radius(block_window_/2),
                search_window(search_window_), block_window(block_window_), minus_h2_inv(-1.f/(h * h * VecTraits<T>::cn)) {}

            PtrStep<T> src;
            mutable PtrStepi buffer;

            __device__ __forceinline__ void initSums_BruteForce(int i, int j, int* dist_sums, PtrStepi& col_sums, PtrStepi& up_col_sums) const
            {
                for(int index = threadIdx.x; index < search_window * search_window; index += STRIDE)
                {
                    dist_sums[index] = 0;

                    for(int tx = 0; tx < block_window; ++tx)
                        col_sums(tx, index) = 0;

                    int y = index / search_window;
                    int x = index - y * search_window;

                    int ay = i;
                    int ax = j;

                    int by = i + y - search_radius;
                    int bx = j + x - search_radius;

#if 1
                    for (int tx = -block_radius; tx <= block_radius; ++tx)
                    {
                        int col_sum = 0;
                        for (int ty = -block_radius; ty <= block_radius; ++ty)
                        {
                            int dist = calcDist(src(ay + ty, ax + tx), src(by + ty, bx + tx));

                            dist_sums[index] += dist;
                            col_sum += dist;
                        }
                        col_sums(tx + block_radius, index) = col_sum;
                    }
#else
                    for (int ty = -block_radius; ty <= block_radius; ++ty)
                        for (int tx = -block_radius; tx <= block_radius; ++tx)
                        {
                            int dist = calcDist(src(ay + ty, ax + tx), src(by + ty, bx + tx));

                            dist_sums[index] += dist;
                            col_sums(tx + block_radius, index) += dist;
                        }
#endif

                    up_col_sums(j, index) = col_sums(block_window - 1, index);
                }
            }

            __device__ __forceinline__ void shiftRight_FirstRow(int i, int j, int first, int* dist_sums, PtrStepi& col_sums, PtrStepi& up_col_sums) const
            {
                for(int index = threadIdx.x; index < search_window * search_window; index += STRIDE)
                {
                    int y = index / search_window;
                    int x = index - y * search_window;

                    int ay = i;
                    int ax = j + block_radius;

                    int by = i + y - search_radius;
                    int bx = j + x - search_radius + block_radius;

                    int col_sum = 0;

                    for (int ty = -block_radius; ty <= block_radius; ++ty)
                        col_sum += calcDist(src(ay + ty, ax), src(by + ty, bx));

                    dist_sums[index] += col_sum - col_sums(first, index);

                    col_sums(first, index) = col_sum;
                    up_col_sums(j, index) = col_sum;
                }
            }

            __device__ __forceinline__ void shiftRight_UpSums(int i, int j, int first, int* dist_sums, PtrStepi& col_sums, PtrStepi& up_col_sums) const
            {
                int ay = i;
                int ax = j + block_radius;

                T a_up   = src(ay - block_radius - 1, ax);
                T a_down = src(ay + block_radius, ax);

                for(int index = threadIdx.x; index < search_window * search_window; index += STRIDE)
                {
                    int y = index / search_window;
                    int x = index - y * search_window;

                    int by = i + y - search_radius;
                    int bx = j + x - search_radius + block_radius;

                    T b_up   = src(by - block_radius - 1, bx);
                    T b_down = src(by + block_radius, bx);

                    int col_sum = up_col_sums(j, index) + calcDist(a_down, b_down) - calcDist(a_up, b_up);

                    dist_sums[index] += col_sum  - col_sums(first, index);
                    col_sums(first, index) = col_sum;
                    up_col_sums(j, index) = col_sum;
                }
            }

            __device__ __forceinline__ void convolve_window(int i, int j, const int* dist_sums, T& dst) const
            {
                typedef typename TypeVec<float, VecTraits<T>::cn>::vec_type sum_type;

                float weights_sum = 0;
                sum_type sum = VecTraits<sum_type>::all(0);

                float bw2_inv = 1.f/(block_window * block_window);

                int sx = j - search_radius;
                int sy = i - search_radius;

                for(int index = threadIdx.x; index < search_window * search_window; index += STRIDE)
                {
                    int y = index / search_window;
                    int x = index - y * search_window;

                    float avg_dist = dist_sums[index] * bw2_inv;
                    float weight = __expf(avg_dist * minus_h2_inv);
                    weights_sum += weight;

                    sum = sum + weight * saturate_cast<sum_type>(src(sy + y, sx + x));
                }

                __shared__ float cta_buffer[CTA_SIZE * (VecTraits<T>::cn + 1)];

                reduce<CTA_SIZE>(Unroll<VecTraits<T>::cn>::template smem_tuple<CTA_SIZE>(cta_buffer),
                                 Unroll<VecTraits<T>::cn>::tie(weights_sum, sum),
                                 threadIdx.x,
                                 Unroll<VecTraits<T>::cn>::op());

                if (threadIdx.x == 0)
                    dst = saturate_cast<T>(sum / weights_sum);
            }

            __device__ __forceinline__ void operator()(PtrStepSz<T>& dst) const
            {
                int tbx = blockIdx.x * TILE_COLS;
                int tby = blockIdx.y * TILE_ROWS;

                int tex = ::min(tbx + TILE_COLS, dst.cols);
                int tey = ::min(tby + TILE_ROWS, dst.rows);

                PtrStepi col_sums;
                col_sums.data = buffer.ptr(dst.cols + blockIdx.x * block_window) + blockIdx.y * search_window * search_window;
                col_sums.step = buffer.step;

                PtrStepi up_col_sums;
                up_col_sums.data = buffer.data + blockIdx.y * search_window * search_window;
                up_col_sums.step = buffer.step;

                extern __shared__ int dist_sums[]; //search_window * search_window

                int first = 0;

                for (int i = tby; i < tey; ++i)
                    for (int j = tbx; j < tex; ++j)
                    {
                        __syncthreads();

                        if (j == tbx)
                        {
                            initSums_BruteForce(i, j, dist_sums, col_sums, up_col_sums);
                            first = 0;
                        }
                        else
                        {
                            if (i == tby)
                              shiftRight_FirstRow(i, j, first, dist_sums, col_sums, up_col_sums);
                            else
                              shiftRight_UpSums(i, j, first, dist_sums, col_sums, up_col_sums);

                            first = (first + 1) % block_window;
                        }

                        __syncthreads();

                        convolve_window(i, j, dist_sums, dst(i, j));
                    }
            }

        };

        template<typename T>
        __global__ void fast_nlm_kernel(const FastNonLocalMeans<T> fnlm, PtrStepSz<T> dst) { fnlm(dst); }

        void nln_fast_get_buffer_size(const PtrStepSzb& src, int search_window, int block_window, int& buffer_cols, int& buffer_rows)
        {
            typedef FastNonLocalMeans<uchar> FNLM;
            dim3 grid(divUp(src.cols, FNLM::TILE_COLS), divUp(src.rows, FNLM::TILE_ROWS));

            buffer_cols = search_window * search_window * grid.y;
            buffer_rows = src.cols + block_window * grid.x;
        }

        template<typename T>
        void nlm_fast_gpu(const PtrStepSzb& src, PtrStepSzb dst, PtrStepi buffer,
                          int search_window, int block_window, float h, cudaStream_t stream)
        {
            typedef FastNonLocalMeans<T> FNLM;
            FNLM fnlm(search_window, block_window, h);

            fnlm.src = (PtrStepSz<T>)src;
            fnlm.buffer = buffer;

            dim3 block(FNLM::CTA_SIZE, 1);
            dim3 grid(divUp(src.cols, FNLM::TILE_COLS), divUp(src.rows, FNLM::TILE_ROWS));
            int smem = search_window * search_window * sizeof(int);


            fast_nlm_kernel<<<grid, block, smem>>>(fnlm, (PtrStepSz<T>)dst);
            cudaSafeCall ( cudaGetLastError () );
            if (stream == 0)
                cudaSafeCall( cudaDeviceSynchronize() );
        }

        template void nlm_fast_gpu<uchar>(const PtrStepSzb&, PtrStepSzb, PtrStepi, int, int, float,  cudaStream_t);
        template void nlm_fast_gpu<uchar2>(const PtrStepSzb&, PtrStepSzb, PtrStepi, int, int, float, cudaStream_t);
        template void nlm_fast_gpu<uchar3>(const PtrStepSzb&, PtrStepSzb, PtrStepi, int, int, float, cudaStream_t);



        __global__ void fnlm_split_kernel(const PtrStepSz<uchar3> lab, PtrStepb l, PtrStep<uchar2> ab)
        {
            int x = threadIdx.x + blockIdx.x * blockDim.x;
            int y = threadIdx.y + blockIdx.y * blockDim.y;

            if (x < lab.cols && y < lab.rows)
            {
                uchar3 p = lab(y, x);
                ab(y,x) = make_uchar2(p.y, p.z);
                l(y,x) = p.x;
            }
        }

        void fnlm_split_channels(const PtrStepSz<uchar3>& lab, PtrStepb l, PtrStep<uchar2> ab, cudaStream_t stream)
        {
            dim3 b(32, 8);
            dim3 g(divUp(lab.cols, b.x), divUp(lab.rows, b.y));

            fnlm_split_kernel<<<g, b>>>(lab, l, ab);
            cudaSafeCall ( cudaGetLastError () );
            if (stream == 0)
                cudaSafeCall( cudaDeviceSynchronize() );
        }

        __global__ void fnlm_merge_kernel(const PtrStepb l, const PtrStep<uchar2> ab, PtrStepSz<uchar3> lab)
        {
            int x = threadIdx.x + blockIdx.x * blockDim.x;
            int y = threadIdx.y + blockIdx.y * blockDim.y;

            if (x < lab.cols && y < lab.rows)
            {
                uchar2 p = ab(y, x);
                lab(y, x) = make_uchar3(l(y, x), p.x, p.y);
            }
        }

        void fnlm_merge_channels(const PtrStepb& l, const PtrStep<uchar2>& ab, PtrStepSz<uchar3> lab, cudaStream_t stream)
        {
            dim3 b(32, 8);
            dim3 g(divUp(lab.cols, b.x), divUp(lab.rows, b.y));

            fnlm_merge_kernel<<<g, b>>>(l, ab, lab);
            cudaSafeCall ( cudaGetLastError () );
            if (stream == 0)
                cudaSafeCall( cudaDeviceSynchronize() );
        }
    }
}}}
wester committed
567 568 569


#endif /* CUDA_DISABLER */