brox_optical_flow.cpp 7.59 KB
Newer Older
wester committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
#include <iostream>
#include <iomanip>
#include <string>
#include <ctype.h>

#include "opencv2/core/core.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/gpu/gpu.hpp"

using namespace std;
using namespace cv;
using namespace cv::gpu;

void getFlowField(const Mat& u, const Mat& v, Mat& flowField);

int main(int argc, const char* argv[])
{
    try
    {
        const char* keys =
           "{ h  | help      | false | print help message }"
           "{ l  | left      |       | specify left image }"
           "{ r  | right     |       | specify right image }"
           "{ s  | scale     | 0.8   | set pyramid scale factor }"
           "{ a  | alpha     | 0.197 | set alpha }"
           "{ g  | gamma     | 50.0  | set gamma }"
           "{ i  | inner     | 10    | set number of inner iterations }"
           "{ o  | outer     | 77    | set number of outer iterations }"
           "{ si | solver    | 10    | set number of basic solver iterations }"
           "{ t  | time_step | 0.1   | set frame interpolation time step }";

        CommandLineParser cmd(argc, argv, keys);

        if (cmd.get<bool>("help"))
        {
            cout << "Usage: brox_optical_flow [options]" << endl;
            cout << "Avaible options:" << endl;
            cmd.printParams();
            return 0;
        }

        string frame0Name = cmd.get<string>("left");
        string frame1Name = cmd.get<string>("right");
        float scale = cmd.get<float>("scale");
        float alpha = cmd.get<float>("alpha");
        float gamma = cmd.get<float>("gamma");
        int inner_iterations = cmd.get<int>("inner");
        int outer_iterations = cmd.get<int>("outer");
        int solver_iterations = cmd.get<int>("solver");
        float timeStep = cmd.get<float>("time_step");

        if (frame0Name.empty() || frame1Name.empty())
        {
            cerr << "Missing input file names" << endl;
            return -1;
        }

        Mat frame0Color = imread(frame0Name);
        Mat frame1Color = imread(frame1Name);

        if (frame0Color.empty() || frame1Color.empty())
        {
            cout << "Can't load input images" << endl;
            return -1;
        }

        cv::gpu::printShortCudaDeviceInfo(cv::gpu::getDevice());

        cout << "OpenCV / NVIDIA Computer Vision" << endl;
        cout << "Optical Flow Demo: Frame Interpolation" << endl;
        cout << "=========================================" << endl;

        namedWindow("Forward flow");
        namedWindow("Backward flow");

        namedWindow("Interpolated frame");

        cout << "Press:" << endl;
        cout << "\tESC to quit" << endl;
        cout << "\t'a' to move to the previous frame" << endl;
        cout << "\t's' to move to the next frame\n" << endl;

        frame0Color.convertTo(frame0Color, CV_32F, 1.0 / 255.0);
        frame1Color.convertTo(frame1Color, CV_32F, 1.0 / 255.0);

        Mat frame0Gray, frame1Gray;

        cvtColor(frame0Color, frame0Gray, COLOR_BGR2GRAY);
        cvtColor(frame1Color, frame1Gray, COLOR_BGR2GRAY);

        GpuMat d_frame0(frame0Gray);
        GpuMat d_frame1(frame1Gray);

        cout << "Estimating optical flow" << endl;

        BroxOpticalFlow d_flow(alpha, gamma, scale, inner_iterations, outer_iterations, solver_iterations);

        cout << "\tForward..." << endl;

        GpuMat d_fu, d_fv;

        d_flow(d_frame0, d_frame1, d_fu, d_fv);

        Mat flowFieldForward;
        getFlowField(Mat(d_fu), Mat(d_fv), flowFieldForward);

        cout << "\tBackward..." << endl;

        GpuMat d_bu, d_bv;

        d_flow(d_frame1, d_frame0, d_bu, d_bv);

        Mat flowFieldBackward;
        getFlowField(Mat(d_bu), Mat(d_bv), flowFieldBackward);

        cout << "Interpolating..." << endl;

        // first frame color components
        GpuMat d_b, d_g, d_r;

        // second frame color components
        GpuMat d_bt, d_gt, d_rt;

        // prepare color components on host and copy them to device memory
        Mat channels[3];
        cv::split(frame0Color, channels);

        d_b.upload(channels[0]);
        d_g.upload(channels[1]);
        d_r.upload(channels[2]);

        cv::split(frame1Color, channels);

        d_bt.upload(channels[0]);
        d_gt.upload(channels[1]);
        d_rt.upload(channels[2]);

        // temporary buffer
        GpuMat d_buf;

        // intermediate frame color components (GPU memory)
        GpuMat d_rNew, d_gNew, d_bNew;

        GpuMat d_newFrame;

        vector<Mat> frames;
        frames.reserve(static_cast<int>(1.0f / timeStep) + 2);

        frames.push_back(frame0Color);

        // compute interpolated frames
        for (float timePos = timeStep; timePos < 1.0f; timePos += timeStep)
        {
            // interpolate blue channel
            interpolateFrames(d_b, d_bt, d_fu, d_fv, d_bu, d_bv, timePos, d_bNew, d_buf);

            // interpolate green channel
            interpolateFrames(d_g, d_gt, d_fu, d_fv, d_bu, d_bv, timePos, d_gNew, d_buf);

            // interpolate red channel
            interpolateFrames(d_r, d_rt, d_fu, d_fv, d_bu, d_bv, timePos, d_rNew, d_buf);

            GpuMat channels3[] = {d_bNew, d_gNew, d_rNew};
            merge(channels3, 3, d_newFrame);

            frames.push_back(Mat(d_newFrame));

            cout << setprecision(4) << timePos * 100.0f << "%\r";
        }

        frames.push_back(frame1Color);

        cout << setw(5) << "100%" << endl;

        cout << "Done" << endl;

        imshow("Forward flow", flowFieldForward);
        imshow("Backward flow", flowFieldBackward);

        int currentFrame = 0;

        imshow("Interpolated frame", frames[currentFrame]);

        for(;;)
        {
            int key = toupper(waitKey(10) & 0xff);

            switch (key)
            {
            case 27:
                return 0;

            case 'A':
                if (currentFrame > 0)
                    --currentFrame;

                imshow("Interpolated frame", frames[currentFrame]);
                break;

            case 'S':
                if (currentFrame < static_cast<int>(frames.size()) - 1)
                    ++currentFrame;

                imshow("Interpolated frame", frames[currentFrame]);
                break;
            }
        }
    }
    catch (const exception& ex)
    {
        cerr << ex.what() << endl;
        return -1;
    }
    catch (...)
    {
        cerr << "Unknow error" << endl;
        return -1;
    }
}

template <typename T> inline T clamp (T x, T a, T b)
{
    return ((x) > (a) ? ((x) < (b) ? (x) : (b)) : (a));
}

template <typename T> inline T mapValue(T x, T a, T b, T c, T d)
{
    x = clamp(x, a, b);
    return c + (d - c) * (x - a) / (b - a);
}

void getFlowField(const Mat& u, const Mat& v, Mat& flowField)
{
    float maxDisplacement = 1.0f;

    for (int i = 0; i < u.rows; ++i)
    {
        const float* ptr_u = u.ptr<float>(i);
        const float* ptr_v = v.ptr<float>(i);

        for (int j = 0; j < u.cols; ++j)
        {
            float d = max(fabsf(ptr_u[j]), fabsf(ptr_v[j]));

            if (d > maxDisplacement)
                maxDisplacement = d;
        }
    }

    flowField.create(u.size(), CV_8UC4);

    for (int i = 0; i < flowField.rows; ++i)
    {
        const float* ptr_u = u.ptr<float>(i);
        const float* ptr_v = v.ptr<float>(i);


        Vec4b* row = flowField.ptr<Vec4b>(i);

        for (int j = 0; j < flowField.cols; ++j)
        {
            row[j][0] = 0;
            row[j][1] = static_cast<unsigned char> (mapValue (-ptr_v[j], -maxDisplacement, maxDisplacement, 0.0f, 255.0f));
            row[j][2] = static_cast<unsigned char> (mapValue ( ptr_u[j], -maxDisplacement, maxDisplacement, 0.0f, 255.0f));
            row[j][3] = 255;
        }
    }
}