posit.cpp 12.2 KB
Newer Older
wester committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                        Intel License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of Intel Corporation may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"

/* POSIT structure */
struct CvPOSITObject
{
    int N;
    float* inv_matr;
    float* obj_vecs;
    float* img_vecs;
};

static void icvPseudoInverse3D( float *a, float *b, int n, int method );

static  CvStatus  icvCreatePOSITObject( CvPoint3D32f *points,
                                        int numPoints,
                                        CvPOSITObject **ppObject )
{
    int i;

    /* Compute size of required memory */
    /* buffer for inverse matrix = N*3*float */
    /* buffer for storing weakImagePoints = numPoints * 2 * float */
    /* buffer for storing object vectors = N*3*float */
    /* buffer for storing image vectors = N*2*float */

    int N = numPoints - 1;
    int inv_matr_size = N * 3 * sizeof( float );
    int obj_vec_size = inv_matr_size;
    int img_vec_size = N * 2 * sizeof( float );
    CvPOSITObject *pObject;

    /* check bad arguments */
    if( points == NULL )
        return CV_NULLPTR_ERR;
    if( numPoints < 4 )
        return CV_BADSIZE_ERR;
    if( ppObject == NULL )
        return CV_NULLPTR_ERR;

    /* memory allocation */
    pObject = (CvPOSITObject *) cvAlloc( sizeof( CvPOSITObject ) +
                                         inv_matr_size + obj_vec_size + img_vec_size );

    if( !pObject )
        return CV_OUTOFMEM_ERR;

    /* part the memory between all structures */
    pObject->N = N;
    pObject->inv_matr = (float *) ((char *) pObject + sizeof( CvPOSITObject ));
    pObject->obj_vecs = (float *) ((char *) (pObject->inv_matr) + inv_matr_size);
    pObject->img_vecs = (float *) ((char *) (pObject->obj_vecs) + obj_vec_size);

/****************************************************************************************\
*          Construct object vectors from object points                                   *
\****************************************************************************************/
    for( i = 0; i < numPoints - 1; i++ )
    {
        pObject->obj_vecs[i] = points[i + 1].x - points[0].x;
        pObject->obj_vecs[N + i] = points[i + 1].y - points[0].y;
        pObject->obj_vecs[2 * N + i] = points[i + 1].z - points[0].z;
    }
/****************************************************************************************\
*   Compute pseudoinverse matrix                                                         *
\****************************************************************************************/
    icvPseudoInverse3D( pObject->obj_vecs, pObject->inv_matr, N, 0 );

    *ppObject = pObject;
    return CV_NO_ERR;
}


static  CvStatus  icvPOSIT( CvPOSITObject *pObject, CvPoint2D32f *imagePoints,
                            float focalLength, CvTermCriteria criteria,
                            float* rotation, float* translation )
{
    int i, j, k;
    int count = 0, converged = 0;
wester committed
118
    float inorm, jnorm, invInorm, invJnorm, invScale, scale = 0, inv_Z = 0;
wester committed
119
    float diff = (float)criteria.epsilon;
wester committed
120
    float inv_focalLength = 1 / focalLength;
wester committed
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196

    /* Check bad arguments */
    if( imagePoints == NULL )
        return CV_NULLPTR_ERR;
    if( pObject == NULL )
        return CV_NULLPTR_ERR;
    if( focalLength <= 0 )
        return CV_BADFACTOR_ERR;
    if( !rotation )
        return CV_NULLPTR_ERR;
    if( !translation )
        return CV_NULLPTR_ERR;
    if( (criteria.type == 0) || (criteria.type > (CV_TERMCRIT_ITER | CV_TERMCRIT_EPS)))
        return CV_BADFLAG_ERR;
    if( (criteria.type & CV_TERMCRIT_EPS) && criteria.epsilon < 0 )
        return CV_BADFACTOR_ERR;
    if( (criteria.type & CV_TERMCRIT_ITER) && criteria.max_iter <= 0 )
        return CV_BADFACTOR_ERR;

    /* init variables */
    int N = pObject->N;
    float *objectVectors = pObject->obj_vecs;
    float *invMatrix = pObject->inv_matr;
    float *imgVectors = pObject->img_vecs;

    while( !converged )
    {
        if( count == 0 )
        {
            /* subtract out origin to get image vectors */
            for( i = 0; i < N; i++ )
            {
                imgVectors[i] = imagePoints[i + 1].x - imagePoints[0].x;
                imgVectors[N + i] = imagePoints[i + 1].y - imagePoints[0].y;
            }
        }
        else
        {
            diff = 0;
            /* Compute new SOP (scaled orthograthic projection) image from pose */
            for( i = 0; i < N; i++ )
            {
                /* objectVector * k */
                float old;
                float tmp = objectVectors[i] * rotation[6] /*[2][0]*/ +
                    objectVectors[N + i] * rotation[7]     /*[2][1]*/ +
                    objectVectors[2 * N + i] * rotation[8] /*[2][2]*/;

                tmp *= inv_Z;
                tmp += 1;

                old = imgVectors[i];
                imgVectors[i] = imagePoints[i + 1].x * tmp - imagePoints[0].x;

                diff = MAX( diff, (float) fabs( imgVectors[i] - old ));

                old = imgVectors[N + i];
                imgVectors[N + i] = imagePoints[i + 1].y * tmp - imagePoints[0].y;

                diff = MAX( diff, (float) fabs( imgVectors[N + i] - old ));
            }
        }

        /* calculate I and J vectors */
        for( i = 0; i < 2; i++ )
        {
            for( j = 0; j < 3; j++ )
            {
                rotation[3*i+j] /*[i][j]*/ = 0;
                for( k = 0; k < N; k++ )
                {
                    rotation[3*i+j] /*[i][j]*/ += invMatrix[j * N + k] * imgVectors[i * N + k];
                }
            }
        }

wester committed
197
        inorm = rotation[0] /*[0][0]*/ * rotation[0] /*[0][0]*/ +
wester committed
198 199 200
                rotation[1] /*[0][1]*/ * rotation[1] /*[0][1]*/ +
                rotation[2] /*[0][2]*/ * rotation[2] /*[0][2]*/;

wester committed
201
        jnorm = rotation[3] /*[1][0]*/ * rotation[3] /*[1][0]*/ +
wester committed
202 203 204
                rotation[4] /*[1][1]*/ * rotation[4] /*[1][1]*/ +
                rotation[5] /*[1][2]*/ * rotation[5] /*[1][2]*/;

wester committed
205 206
        invInorm = cvInvSqrt( inorm );
        invJnorm = cvInvSqrt( jnorm );
wester committed
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235

        inorm *= invInorm;
        jnorm *= invJnorm;

        rotation[0] /*[0][0]*/ *= invInorm;
        rotation[1] /*[0][1]*/ *= invInorm;
        rotation[2] /*[0][2]*/ *= invInorm;

        rotation[3] /*[1][0]*/ *= invJnorm;
        rotation[4] /*[1][1]*/ *= invJnorm;
        rotation[5] /*[1][2]*/ *= invJnorm;

        /* row2 = row0 x row1 (cross product) */
        rotation[6] /*->m[2][0]*/ = rotation[1] /*->m[0][1]*/ * rotation[5] /*->m[1][2]*/ -
                                    rotation[2] /*->m[0][2]*/ * rotation[4] /*->m[1][1]*/;

        rotation[7] /*->m[2][1]*/ = rotation[2] /*->m[0][2]*/ * rotation[3] /*->m[1][0]*/ -
                                    rotation[0] /*->m[0][0]*/ * rotation[5] /*->m[1][2]*/;

        rotation[8] /*->m[2][2]*/ = rotation[0] /*->m[0][0]*/ * rotation[4] /*->m[1][1]*/ -
                                    rotation[1] /*->m[0][1]*/ * rotation[3] /*->m[1][0]*/;

        scale = (inorm + jnorm) / 2.0f;
        inv_Z = scale * inv_focalLength;

        count++;
        converged = ((criteria.type & CV_TERMCRIT_EPS) && (diff < criteria.epsilon));
        converged |= ((criteria.type & CV_TERMCRIT_ITER) && (count == criteria.max_iter));
    }
wester committed
236
    invScale = 1 / scale;
wester committed
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
    translation[0] = imagePoints[0].x * invScale;
    translation[1] = imagePoints[0].y * invScale;
    translation[2] = 1 / inv_Z;

    return CV_NO_ERR;
}


static  CvStatus  icvReleasePOSITObject( CvPOSITObject ** ppObject )
{
    cvFree( ppObject );
    return CV_NO_ERR;
}

/*F///////////////////////////////////////////////////////////////////////////////////////
//    Name:       icvPseudoInverse3D
//    Purpose:    Pseudoinverse N x 3 matrix     N >= 3
//    Context:
//    Parameters:
//                a - input matrix
//                b - pseudoinversed a
//                n - number of rows in a
//                method - if 0, then b = inv(transpose(a)*a) * transpose(a)
//                         if 1, then SVD used.
//    Returns:
//    Notes:      Both matrix are stored by n-dimensional vectors.
//                Now only method == 0 supported.
//F*/
void
icvPseudoInverse3D( float *a, float *b, int n, int method )
{
wester committed
268 269
    int k;

wester committed
270 271 272 273 274 275 276 277
    if( method == 0 )
    {
        float ata00 = 0;
        float ata11 = 0;
        float ata22 = 0;
        float ata01 = 0;
        float ata02 = 0;
        float ata12 = 0;
wester committed
278
        float det = 0;
wester committed
279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296

        /* compute matrix ata = transpose(a) * a  */
        for( k = 0; k < n; k++ )
        {
            float a0 = a[k];
            float a1 = a[n + k];
            float a2 = a[2 * n + k];

            ata00 += a0 * a0;
            ata11 += a1 * a1;
            ata22 += a2 * a2;

            ata01 += a0 * a1;
            ata02 += a0 * a2;
            ata12 += a1 * a2;
        }
        /* inverse matrix ata */
        {
wester committed
297
            float inv_det;
wester committed
298 299 300 301 302 303 304 305 306 307 308 309
            float p00 = ata11 * ata22 - ata12 * ata12;
            float p01 = -(ata01 * ata22 - ata12 * ata02);
            float p02 = ata12 * ata01 - ata11 * ata02;

            float p11 = ata00 * ata22 - ata02 * ata02;
            float p12 = -(ata00 * ata12 - ata01 * ata02);
            float p22 = ata00 * ata11 - ata01 * ata01;

            det += ata00 * p00;
            det += ata01 * p01;
            det += ata02 * p02;

wester committed
310
            inv_det = 1 / det;
wester committed
311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358

            /* compute resultant matrix */
            for( k = 0; k < n; k++ )
            {
                float a0 = a[k];
                float a1 = a[n + k];
                float a2 = a[2 * n + k];

                b[k] = (p00 * a0 + p01 * a1 + p02 * a2) * inv_det;
                b[n + k] = (p01 * a0 + p11 * a1 + p12 * a2) * inv_det;
                b[2 * n + k] = (p02 * a0 + p12 * a1 + p22 * a2) * inv_det;
            }
        }
    }

    /*if ( method == 1 )
       {
       }
     */

    return;
}

CV_IMPL CvPOSITObject *
cvCreatePOSITObject( CvPoint3D32f * points, int numPoints )
{
    CvPOSITObject *pObject = 0;
    IPPI_CALL( icvCreatePOSITObject( points, numPoints, &pObject ));
    return pObject;
}


CV_IMPL void
cvPOSIT( CvPOSITObject * pObject, CvPoint2D32f * imagePoints,
         double focalLength, CvTermCriteria criteria,
         float* rotation, float* translation )
{
    IPPI_CALL( icvPOSIT( pObject, imagePoints,(float) focalLength, criteria,
                         rotation, translation ));
}

CV_IMPL void
cvReleasePOSITObject( CvPOSITObject ** ppObject )
{
    IPPI_CALL( icvReleasePOSITObject( ppObject ));
}

/* End of file. */