test_kmeans.cpp 8.05 KB
Newer Older
wester committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// @Authors
//    Erping Pang,   pang_er_ping@163.com
//    Xiaopeng Fu,   fuxiaopeng2222@163.com
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#include "test_precomp.hpp"

#ifdef HAVE_OPENCL

using namespace cvtest;
using namespace testing;
using namespace std;
using namespace cv;

#define OCL_KMEANS_USE_INITIAL_LABELS 1
#define OCL_KMEANS_PP_CENTERS         2

PARAM_TEST_CASE(Kmeans, int, int, int)
{
    int type;
    int K;
    int flags;
    Mat src ;
    ocl::oclMat d_src, d_dists;

    Mat labels, centers;
    ocl::oclMat d_labels, d_centers;
    virtual void SetUp()
    {
        K = GET_PARAM(0);
        type = GET_PARAM(1);
        flags = GET_PARAM(2);

        // MWIDTH=256, MHEIGHT=256. defined in utility.hpp
        Size size = Size(MWIDTH, MHEIGHT);
        src.create(size, type);
        int row_idx = 0;
        const int max_neighbour = MHEIGHT / K - 1;
        CV_Assert(K <= MWIDTH);
        for(int i = 0; i < K; i++ )
        {
            Mat center_row_header = src.row(row_idx);
            center_row_header.setTo(0);
            int nchannel = center_row_header.channels();
            for(int j = 0; j < nchannel; j++)
                center_row_header.at<float>(0, i*nchannel+j) = 50000.0;

            for(int j = 0; (j < max_neighbour) ||
                           (i == K-1 && j < max_neighbour + MHEIGHT%K); j ++)
            {
                Mat cur_row_header = src.row(row_idx + 1 + j);
                center_row_header.copyTo(cur_row_header);
                Mat tmpmat = randomMat(cur_row_header.size(), cur_row_header.type(), -200, 200, false);
                cur_row_header += tmpmat;
            }
            row_idx += 1 + max_neighbour;
        }
    }
};
OCL_TEST_P(Kmeans, Mat){
    if(flags & KMEANS_USE_INITIAL_LABELS)
    {
        // inital a given labels
        labels.create(src.rows, 1, CV_32S);
        int *label = labels.ptr<int>();
        for(int i = 0; i < src.rows; i++)
            label[i] = rng.uniform(0, K);
        d_labels.upload(labels);
    }
    d_src.upload(src);

    for(int j = 0; j < LOOP_TIMES; j++)
    {
        kmeans(src, K, labels,
            TermCriteria( CV_TERMCRIT_EPS+CV_TERMCRIT_ITER, 100, 0),
            1, flags, centers);
        ocl::kmeans(d_src, K, d_labels,
            TermCriteria( CV_TERMCRIT_EPS+CV_TERMCRIT_ITER, 100, 0),
            1, flags, d_centers);
        Mat dd_labels(d_labels);
        Mat dd_centers(d_centers);
        if(flags & KMEANS_USE_INITIAL_LABELS)
        {
            EXPECT_MAT_NEAR(labels, dd_labels, 0);
            EXPECT_MAT_NEAR(centers, dd_centers, 1e-3);
        }
        else
        {
            int row_idx = 0;
            for(int i = 0; i < K; i++)
            {
                // verify lables with ground truth resutls
                int label = labels.at<int>(row_idx);
                int header_label = dd_labels.at<int>(row_idx);
                for(int j2 = 0; (j2 < MHEIGHT/K)||(i == K-1 && j2 < MHEIGHT/K+MHEIGHT%K); j2++)
                {
                    ASSERT_NEAR(labels.at<int>(row_idx+j2), label, 0);
                    ASSERT_NEAR(dd_labels.at<int>(row_idx+j2), header_label, 0);
                }

                // verify centers
                float *center = centers.ptr<float>(label);
                float *header_center = dd_centers.ptr<float>(header_label);
                for(int t = 0; t < centers.cols; t++)
                    ASSERT_NEAR(center[t], header_center[t], 1e-3);

                row_idx += MHEIGHT/K;
            }
        }
    }
}

INSTANTIATE_TEST_CASE_P(OCL_ML, Kmeans, Combine(
    Values(3, 5, 8),
    Values(CV_32FC1, CV_32FC2, CV_32FC4),
    Values(OCL_KMEANS_USE_INITIAL_LABELS/*, OCL_KMEANS_PP_CENTERS*/)));


/////////////////////////////// DistanceToCenters //////////////////////////////////////////

CV_ENUM(DistType, NORM_L1, NORM_L2SQR)

PARAM_TEST_CASE(distanceToCenters, DistType, bool)
{
    int distType;
    bool useRoi;

    Mat src, centers, src_roi, centers_roi;
    ocl::oclMat ocl_src, ocl_centers, ocl_src_roi, ocl_centers_roi;

    virtual void SetUp()
    {
        distType = GET_PARAM(0);
        useRoi = GET_PARAM(1);
    }

    void random_roi()
    {
        Size roiSizeSrc = randomSize(1, MAX_VALUE);
        Size roiSizeCenters = randomSize(1, MAX_VALUE);
        roiSizeSrc.width = roiSizeCenters.width;

        Border srcBorder = randomBorder(0, useRoi ? MAX_VALUE : 0);
        randomSubMat(src, src_roi, roiSizeSrc, srcBorder, CV_32FC1, -MAX_VALUE, MAX_VALUE);

        Border centersBorder = randomBorder(0, useRoi ? 500 : 0);
        randomSubMat(centers, centers_roi, roiSizeCenters, centersBorder, CV_32FC1, -MAX_VALUE, MAX_VALUE);

        for (int i = 0; i < centers.rows; i++)
            centers.at<float>(i, randomInt(0, centers.cols)) = (float)randomDouble(SHRT_MAX, INT_MAX);

        generateOclMat(ocl_src, ocl_src_roi, src, roiSizeSrc, srcBorder);
        generateOclMat(ocl_centers, ocl_centers_roi, centers, roiSizeCenters, centersBorder);
    }
};

OCL_TEST_P(distanceToCenters, Accuracy)
{
    for (int j = 0; j < LOOP_TIMES; j++)
    {
        random_roi();

        Mat labels, dists;
        ocl::distanceToCenters(ocl_src_roi, ocl_centers_roi, dists, labels, distType);

        EXPECT_EQ(dists.size(), labels.size());

        Mat batch_dists;
        cv::batchDistance(src_roi, centers_roi, batch_dists, CV_32FC1, noArray(), distType);

        std::vector<float> gold_dists_v;
        gold_dists_v.reserve(batch_dists.rows);

        for (int i = 0; i < batch_dists.rows; i++)
        {
            Mat r = batch_dists.row(i);
            double mVal;
            Point mLoc;
            minMaxLoc(r, &mVal, NULL, &mLoc, NULL);

            int ocl_label = labels.at<int>(i, 0);
            EXPECT_EQ(mLoc.x, ocl_label);

            gold_dists_v.push_back(static_cast<float>(mVal));
        }

        double relative_error = cv::norm(Mat(gold_dists_v), dists, NORM_INF | NORM_RELATIVE);
        ASSERT_LE(relative_error, 1e-5);
    }
}

INSTANTIATE_TEST_CASE_P (OCL_ML, distanceToCenters, Combine(DistType::all(), Bool()));

#endif