undistort.cpp 20.1 KB
Newer Older
wester committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#include "precomp.hpp"

cv::Mat cv::getDefaultNewCameraMatrix( InputArray _cameraMatrix, Size imgsize,
                               bool centerPrincipalPoint )
{
    Mat cameraMatrix = _cameraMatrix.getMat();
    if( !centerPrincipalPoint && cameraMatrix.type() == CV_64F )
        return cameraMatrix;

    Mat newCameraMatrix;
    cameraMatrix.convertTo(newCameraMatrix, CV_64F);
    if( centerPrincipalPoint )
    {
wester committed
56 57
        ((double*)newCameraMatrix.data)[2] = (imgsize.width-1)*0.5;
        ((double*)newCameraMatrix.data)[5] = (imgsize.height-1)*0.5;
wester committed
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
    }
    return newCameraMatrix;
}

void cv::initUndistortRectifyMap( InputArray _cameraMatrix, InputArray _distCoeffs,
                              InputArray _matR, InputArray _newCameraMatrix,
                              Size size, int m1type, OutputArray _map1, OutputArray _map2 )
{
    Mat cameraMatrix = _cameraMatrix.getMat(), distCoeffs = _distCoeffs.getMat();
    Mat matR = _matR.getMat(), newCameraMatrix = _newCameraMatrix.getMat();

    if( m1type <= 0 )
        m1type = CV_16SC2;
    CV_Assert( m1type == CV_16SC2 || m1type == CV_32FC1 || m1type == CV_32FC2 );
    _map1.create( size, m1type );
    Mat map1 = _map1.getMat(), map2;
    if( m1type != CV_32FC2 )
    {
        _map2.create( size, m1type == CV_16SC2 ? CV_16UC1 : CV_32FC1 );
        map2 = _map2.getMat();
    }
    else
        _map2.release();

    Mat_<double> R = Mat_<double>::eye(3, 3);
    Mat_<double> A = Mat_<double>(cameraMatrix), Ar;

wester committed
85
    if( newCameraMatrix.data )
wester committed
86 87 88 89
        Ar = Mat_<double>(newCameraMatrix);
    else
        Ar = getDefaultNewCameraMatrix( A, size, true );

wester committed
90
    if( matR.data )
wester committed
91 92
        R = Mat_<double>(matR);

wester committed
93
    if( distCoeffs.data )
wester committed
94 95 96
        distCoeffs = Mat_<double>(distCoeffs);
    else
    {
wester committed
97
        distCoeffs.create(8, 1, CV_64F);
wester committed
98 99 100 101 102 103 104 105 106 107 108 109 110
        distCoeffs = 0.;
    }

    CV_Assert( A.size() == Size(3,3) && A.size() == R.size() );
    CV_Assert( Ar.size() == Size(3,3) || Ar.size() == Size(4, 3));
    Mat_<double> iR = (Ar.colRange(0,3)*R).inv(DECOMP_LU);
    const double* ir = &iR(0,0);

    double u0 = A(0, 2),  v0 = A(1, 2);
    double fx = A(0, 0),  fy = A(1, 1);

    CV_Assert( distCoeffs.size() == Size(1, 4) || distCoeffs.size() == Size(4, 1) ||
               distCoeffs.size() == Size(1, 5) || distCoeffs.size() == Size(5, 1) ||
wester committed
111
               distCoeffs.size() == Size(1, 8) || distCoeffs.size() == Size(8, 1));
wester committed
112 113 114 115

    if( distCoeffs.rows != 1 && !distCoeffs.isContinuous() )
        distCoeffs = distCoeffs.t();

wester committed
116 117 118 119 120 121 122 123
    double k1 = ((double*)distCoeffs.data)[0];
    double k2 = ((double*)distCoeffs.data)[1];
    double p1 = ((double*)distCoeffs.data)[2];
    double p2 = ((double*)distCoeffs.data)[3];
    double k3 = distCoeffs.cols + distCoeffs.rows - 1 >= 5 ? ((double*)distCoeffs.data)[4] : 0.;
    double k4 = distCoeffs.cols + distCoeffs.rows - 1 >= 8 ? ((double*)distCoeffs.data)[5] : 0.;
    double k5 = distCoeffs.cols + distCoeffs.rows - 1 >= 8 ? ((double*)distCoeffs.data)[6] : 0.;
    double k6 = distCoeffs.cols + distCoeffs.rows - 1 >= 8 ? ((double*)distCoeffs.data)[7] : 0.;
wester committed
124 125 126

    for( int i = 0; i < size.height; i++ )
    {
wester committed
127 128
        float* m1f = (float*)(map1.data + map1.step*i);
        float* m2f = (float*)(map2.data + map2.step*i);
wester committed
129 130 131 132
        short* m1 = (short*)m1f;
        ushort* m2 = (ushort*)m2f;
        double _x = i*ir[1] + ir[2], _y = i*ir[4] + ir[5], _w = i*ir[7] + ir[8];

a  
Kai Westerkamp committed
133
        for( int j = 0; j < size.width; j++, _x += ir[0], _y += ir[3], _w += ir[6] )
wester committed
134 135 136 137 138
        {
            double w = 1./_w, x = _x*w, y = _y*w;
            double x2 = x*x, y2 = y*y;
            double r2 = x2 + y2, _2xy = 2*x*y;
            double kr = (1 + ((k3*r2 + k2)*r2 + k1)*r2)/(1 + ((k6*r2 + k5)*r2 + k4)*r2);
wester committed
139 140
            double u = fx*(x*kr + p1*_2xy + p2*(r2 + 2*x2)) + u0;
            double v = fy*(y*kr + p1*(r2 + 2*y2) + p2*_2xy) + v0;
wester committed
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
            if( m1type == CV_16SC2 )
            {
                int iu = saturate_cast<int>(u*INTER_TAB_SIZE);
                int iv = saturate_cast<int>(v*INTER_TAB_SIZE);
                m1[j*2] = (short)(iu >> INTER_BITS);
                m1[j*2+1] = (short)(iv >> INTER_BITS);
                m2[j] = (ushort)((iv & (INTER_TAB_SIZE-1))*INTER_TAB_SIZE + (iu & (INTER_TAB_SIZE-1)));
            }
            else if( m1type == CV_32FC1 )
            {
                m1f[j] = (float)u;
                m2f[j] = (float)v;
            }
            else
            {
                m1f[j*2] = (float)u;
                m1f[j*2+1] = (float)v;
            }
        }
    }
}


void cv::undistort( InputArray _src, OutputArray _dst, InputArray _cameraMatrix,
                    InputArray _distCoeffs, InputArray _newCameraMatrix )
{
    Mat src = _src.getMat(), cameraMatrix = _cameraMatrix.getMat();
    Mat distCoeffs = _distCoeffs.getMat(), newCameraMatrix = _newCameraMatrix.getMat();

    _dst.create( src.size(), src.type() );
    Mat dst = _dst.getMat();

    CV_Assert( dst.data != src.data );

    int stripe_size0 = std::min(std::max(1, (1 << 12) / std::max(src.cols, 1)), src.rows);
    Mat map1(stripe_size0, src.cols, CV_16SC2), map2(stripe_size0, src.cols, CV_16UC1);

    Mat_<double> A, Ar, I = Mat_<double>::eye(3,3);

    cameraMatrix.convertTo(A, CV_64F);
wester committed
181
    if( distCoeffs.data )
wester committed
182 183 184 185 186 187 188
        distCoeffs = Mat_<double>(distCoeffs);
    else
    {
        distCoeffs.create(5, 1, CV_64F);
        distCoeffs = 0.;
    }

wester committed
189
    if( newCameraMatrix.data )
wester committed
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
        newCameraMatrix.convertTo(Ar, CV_64F);
    else
        A.copyTo(Ar);

    double v0 = Ar(1, 2);
    for( int y = 0; y < src.rows; y += stripe_size0 )
    {
        int stripe_size = std::min( stripe_size0, src.rows - y );
        Ar(1, 2) = v0 - y;
        Mat map1_part = map1.rowRange(0, stripe_size),
            map2_part = map2.rowRange(0, stripe_size),
            dst_part = dst.rowRange(y, y + stripe_size);

        initUndistortRectifyMap( A, distCoeffs, I, Ar, Size(src.cols, stripe_size),
                                 map1_part.type(), map1_part, map2_part );
        remap( src, dst_part, map1_part, map2_part, INTER_LINEAR, BORDER_CONSTANT );
    }
}


CV_IMPL void
cvUndistort2( const CvArr* srcarr, CvArr* dstarr, const CvMat* Aarr, const CvMat* dist_coeffs, const CvMat* newAarr )
{
    cv::Mat src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr), dst0 = dst;
    cv::Mat A = cv::cvarrToMat(Aarr), distCoeffs = cv::cvarrToMat(dist_coeffs), newA;
    if( newAarr )
        newA = cv::cvarrToMat(newAarr);

    CV_Assert( src.size() == dst.size() && src.type() == dst.type() );
    cv::undistort( src, dst, A, distCoeffs, newA );
}


CV_IMPL void cvInitUndistortMap( const CvMat* Aarr, const CvMat* dist_coeffs,
                                 CvArr* mapxarr, CvArr* mapyarr )
{
    cv::Mat A = cv::cvarrToMat(Aarr), distCoeffs = cv::cvarrToMat(dist_coeffs);
    cv::Mat mapx = cv::cvarrToMat(mapxarr), mapy, mapx0 = mapx, mapy0;

    if( mapyarr )
        mapy0 = mapy = cv::cvarrToMat(mapyarr);

    cv::initUndistortRectifyMap( A, distCoeffs, cv::Mat(), A,
                                 mapx.size(), mapx.type(), mapx, mapy );
    CV_Assert( mapx0.data == mapx.data && mapy0.data == mapy.data );
}

void
cvInitUndistortRectifyMap( const CvMat* Aarr, const CvMat* dist_coeffs,
    const CvMat *Rarr, const CvMat* ArArr, CvArr* mapxarr, CvArr* mapyarr )
{
    cv::Mat A = cv::cvarrToMat(Aarr), distCoeffs, R, Ar;
    cv::Mat mapx = cv::cvarrToMat(mapxarr), mapy, mapx0 = mapx, mapy0;

    if( mapyarr )
        mapy0 = mapy = cv::cvarrToMat(mapyarr);

    if( dist_coeffs )
        distCoeffs = cv::cvarrToMat(dist_coeffs);
    if( Rarr )
        R = cv::cvarrToMat(Rarr);
    if( ArArr )
        Ar = cv::cvarrToMat(ArArr);

    cv::initUndistortRectifyMap( A, distCoeffs, R, Ar, mapx.size(), mapx.type(), mapx, mapy );
    CV_Assert( mapx0.data == mapx.data && mapy0.data == mapy.data );
}


void cvUndistortPoints( const CvMat* _src, CvMat* _dst, const CvMat* _cameraMatrix,
                   const CvMat* _distCoeffs,
                   const CvMat* matR, const CvMat* matP )
{
wester committed
263
    double A[3][3], RR[3][3], k[8]={0,0,0,0,0,0,0,0}, fx, fy, ifx, ify, cx, cy;
wester committed
264 265
    CvMat matA=cvMat(3, 3, CV_64F, A), _Dk;
    CvMat _RR=cvMat(3, 3, CV_64F, RR);
a  
Kai Westerkamp committed
266 267 268 269 270 271 272
    const CvPoint2D32f* srcf;
    const CvPoint2D64f* srcd;
    CvPoint2D32f* dstf;
    CvPoint2D64f* dstd;
    int stype, dtype;
    int sstep, dstep;
    int i, j, n, iters = 1;
wester committed
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291

    CV_Assert( CV_IS_MAT(_src) && CV_IS_MAT(_dst) &&
        (_src->rows == 1 || _src->cols == 1) &&
        (_dst->rows == 1 || _dst->cols == 1) &&
        _src->cols + _src->rows - 1 == _dst->rows + _dst->cols - 1 &&
        (CV_MAT_TYPE(_src->type) == CV_32FC2 || CV_MAT_TYPE(_src->type) == CV_64FC2) &&
        (CV_MAT_TYPE(_dst->type) == CV_32FC2 || CV_MAT_TYPE(_dst->type) == CV_64FC2));

    CV_Assert( CV_IS_MAT(_cameraMatrix) &&
        _cameraMatrix->rows == 3 && _cameraMatrix->cols == 3 );

    cvConvert( _cameraMatrix, &matA );

    if( _distCoeffs )
    {
        CV_Assert( CV_IS_MAT(_distCoeffs) &&
            (_distCoeffs->rows == 1 || _distCoeffs->cols == 1) &&
            (_distCoeffs->rows*_distCoeffs->cols == 4 ||
             _distCoeffs->rows*_distCoeffs->cols == 5 ||
wester committed
292
             _distCoeffs->rows*_distCoeffs->cols == 8));
wester committed
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317

        _Dk = cvMat( _distCoeffs->rows, _distCoeffs->cols,
            CV_MAKETYPE(CV_64F,CV_MAT_CN(_distCoeffs->type)), k);

        cvConvert( _distCoeffs, &_Dk );
        iters = 5;
    }

    if( matR )
    {
        CV_Assert( CV_IS_MAT(matR) && matR->rows == 3 && matR->cols == 3 );
        cvConvert( matR, &_RR );
    }
    else
        cvSetIdentity(&_RR);

    if( matP )
    {
        double PP[3][3];
        CvMat _P3x3, _PP=cvMat(3, 3, CV_64F, PP);
        CV_Assert( CV_IS_MAT(matP) && matP->rows == 3 && (matP->cols == 3 || matP->cols == 4));
        cvConvert( cvGetCols(matP, &_P3x3, 0, 3), &_PP );
        cvMatMul( &_PP, &_RR, &_RR );
    }

a  
Kai Westerkamp committed
318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
    srcf = (const CvPoint2D32f*)_src->data.ptr;
    srcd = (const CvPoint2D64f*)_src->data.ptr;
    dstf = (CvPoint2D32f*)_dst->data.ptr;
    dstd = (CvPoint2D64f*)_dst->data.ptr;
    stype = CV_MAT_TYPE(_src->type);
    dtype = CV_MAT_TYPE(_dst->type);
    sstep = _src->rows == 1 ? 1 : _src->step/CV_ELEM_SIZE(stype);
    dstep = _dst->rows == 1 ? 1 : _dst->step/CV_ELEM_SIZE(dtype);

    n = _src->rows + _src->cols - 1;

    fx = A[0][0];
    fy = A[1][1];
    ifx = 1./fx;
    ify = 1./fy;
    cx = A[0][2];
    cy = A[1][2];

    for( i = 0; i < n; i++ )
wester committed
337
    {
a  
Kai Westerkamp committed
338
        double x, y, x0, y0;
wester committed
339 340 341 342 343 344 345 346 347 348 349
        if( stype == CV_32FC2 )
        {
            x = srcf[i*sstep].x;
            y = srcf[i*sstep].y;
        }
        else
        {
            x = srcd[i*sstep].x;
            y = srcd[i*sstep].y;
        }

wester committed
350 351
        x0 = x = (x - cx)*ifx;
        y0 = y = (y - cy)*ify;
wester committed
352 353

        // compensate distortion iteratively
a  
Kai Westerkamp committed
354
        for( j = 0; j < iters; j++ )
wester committed
355 356 357
        {
            double r2 = x*x + y*y;
            double icdist = (1 + ((k[7]*r2 + k[6])*r2 + k[5])*r2)/(1 + ((k[4]*r2 + k[1])*r2 + k[0])*r2);
wester committed
358 359
            double deltaX = 2*k[2]*x*y + k[3]*(r2 + 2*x*x);
            double deltaY = k[2]*(r2 + 2*y*y) + 2*k[3]*x*y;
wester committed
360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
            x = (x0 - deltaX)*icdist;
            y = (y0 - deltaY)*icdist;
        }

        double xx = RR[0][0]*x + RR[0][1]*y + RR[0][2];
        double yy = RR[1][0]*x + RR[1][1]*y + RR[1][2];
        double ww = 1./(RR[2][0]*x + RR[2][1]*y + RR[2][2]);
        x = xx*ww;
        y = yy*ww;

        if( dtype == CV_32FC2 )
        {
            dstf[i*dstep].x = (float)x;
            dstf[i*dstep].y = (float)y;
        }
        else
        {
            dstd[i*dstep].x = x;
            dstd[i*dstep].y = y;
        }
    }
}


void cv::undistortPoints( InputArray _src, OutputArray _dst,
                          InputArray _cameraMatrix,
                          InputArray _distCoeffs,
                          InputArray _Rmat,
                          InputArray _Pmat )
{
    Mat src = _src.getMat(), cameraMatrix = _cameraMatrix.getMat();
    Mat distCoeffs = _distCoeffs.getMat(), R = _Rmat.getMat(), P = _Pmat.getMat();

    CV_Assert( src.isContinuous() && (src.depth() == CV_32F || src.depth() == CV_64F) &&
              ((src.rows == 1 && src.channels() == 2) || src.cols*src.channels() == 2));

    _dst.create(src.size(), src.type(), -1, true);
    Mat dst = _dst.getMat();

    CvMat _csrc = src, _cdst = dst, _ccameraMatrix = cameraMatrix;
    CvMat matR, matP, _cdistCoeffs, *pR=0, *pP=0, *pD=0;
wester committed
401
    if( R.data )
wester committed
402
        pR = &(matR = R);
wester committed
403
    if( P.data )
wester committed
404
        pP = &(matP = P);
wester committed
405
    if( distCoeffs.data )
wester committed
406 407 408 409 410 411 412 413 414 415 416 417
        pD = &(_cdistCoeffs = distCoeffs);
    cvUndistortPoints(&_csrc, &_cdst, &_ccameraMatrix, pD, pR, pP);
}

namespace cv
{

static Point2f mapPointSpherical(const Point2f& p, float alpha, Vec4d* J, int projType)
{
    double x = p.x, y = p.y;
    double beta = 1 + 2*alpha;
    double v = x*x + y*y + 1, iv = 1/v;
wester committed
418
    double u = sqrt(beta*v + alpha*alpha);
wester committed
419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438

    double k = (u - alpha)*iv;
    double kv = (v*beta/u - (u - alpha)*2)*iv*iv;
    double kx = kv*x, ky = kv*y;

    if( projType == PROJ_SPHERICAL_ORTHO )
    {
        if(J)
            *J = Vec4d(kx*x + k, kx*y, ky*x, ky*y + k);
        return Point2f((float)(x*k), (float)(y*k));
    }
    if( projType == PROJ_SPHERICAL_EQRECT )
    {
        // equirectangular
        double iR = 1/(alpha + 1);
        double x1 = std::max(std::min(x*k*iR, 1.), -1.);
        double y1 = std::max(std::min(y*k*iR, 1.), -1.);

        if(J)
        {
wester committed
439 440
            double fx1 = iR/sqrt(1 - x1*x1);
            double fy1 = iR/sqrt(1 - y1*y1);
wester committed
441 442 443 444 445 446 447 448 449 450 451
            *J = Vec4d(fx1*(kx*x + k), fx1*ky*x, fy1*kx*y, fy1*(ky*y + k));
        }
        return Point2f((float)asin(x1), (float)asin(y1));
    }
    CV_Error(CV_StsBadArg, "Unknown projection type");
    return Point2f();
}


static Point2f invMapPointSpherical(Point2f _p, float alpha, int projType)
{
a  
Kai Westerkamp committed
452 453
    static int avgiter = 0, avgn = 0;

wester committed
454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
    double eps = 1e-12;
    Vec2d p(_p.x, _p.y), q(_p.x, _p.y), err;
    Vec4d J;
    int i, maxiter = 5;

    for( i = 0; i < maxiter; i++ )
    {
        Point2f p1 = mapPointSpherical(Point2f((float)q[0], (float)q[1]), alpha, &J, projType);
        err = Vec2d(p1.x, p1.y) - p;
        if( err[0]*err[0] + err[1]*err[1] < eps )
            break;

        Vec4d JtJ(J[0]*J[0] + J[2]*J[2], J[0]*J[1] + J[2]*J[3],
                  J[0]*J[1] + J[2]*J[3], J[1]*J[1] + J[3]*J[3]);
        double d = JtJ[0]*JtJ[3] - JtJ[1]*JtJ[2];
        d = d ? 1./d : 0;
        Vec4d iJtJ(JtJ[3]*d, -JtJ[1]*d, -JtJ[2]*d, JtJ[0]*d);
        Vec2d JtErr(J[0]*err[0] + J[2]*err[1], J[1]*err[0] + J[3]*err[1]);

        q -= Vec2d(iJtJ[0]*JtErr[0] + iJtJ[1]*JtErr[1], iJtJ[2]*JtErr[0] + iJtJ[3]*JtErr[1]);
        //Matx22d J(kx*x + k, kx*y, ky*x, ky*y + k);
        //q -= Vec2d((J.t()*J).inv()*(J.t()*err));
    }

a  
Kai Westerkamp committed
478 479 480 481 482 483 484 485
    if( i < maxiter )
    {
        avgiter += i;
        avgn++;
        if( avgn == 1500 )
            printf("avg iters = %g\n", (double)avgiter/avgn);
    }

wester committed
486 487 488 489 490 491 492 493 494 495
    return i < maxiter ? Point2f((float)q[0], (float)q[1]) : Point2f(-FLT_MAX, -FLT_MAX);
}

}

float cv::initWideAngleProjMap( InputArray _cameraMatrix0, InputArray _distCoeffs0,
                            Size imageSize, int destImageWidth, int m1type,
                            OutputArray _map1, OutputArray _map2, int projType, double _alpha )
{
    Mat cameraMatrix0 = _cameraMatrix0.getMat(), distCoeffs0 = _distCoeffs0.getMat();
wester committed
496
    double k[8] = {0,0,0,0,0,0,0,0}, M[9]={0,0,0,0,0,0,0,0,0};
wester committed
497 498 499 500 501 502 503 504 505 506 507 508
    Mat distCoeffs(distCoeffs0.rows, distCoeffs0.cols, CV_MAKETYPE(CV_64F,distCoeffs0.channels()), k);
    Mat cameraMatrix(3,3,CV_64F,M);
    Point2f scenter((float)cameraMatrix.at<double>(0,2), (float)cameraMatrix.at<double>(1,2));
    Point2f dcenter((destImageWidth-1)*0.5f, 0.f);
    float xmin = FLT_MAX, xmax = -FLT_MAX, ymin = FLT_MAX, ymax = -FLT_MAX;
    int N = 9;
    std::vector<Point2f> uvec(1), vvec(1);
    Mat I = Mat::eye(3,3,CV_64F);
    float alpha = (float)_alpha;

    int ndcoeffs = distCoeffs0.cols*distCoeffs0.rows*distCoeffs0.channels();
    CV_Assert((distCoeffs0.cols == 1 || distCoeffs0.rows == 1) &&
wester committed
509
              (ndcoeffs == 4 || ndcoeffs == 5 || ndcoeffs == 8));
wester committed
510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
    CV_Assert(cameraMatrix0.size() == Size(3,3));
    distCoeffs0.convertTo(distCoeffs,CV_64F);
    cameraMatrix0.convertTo(cameraMatrix,CV_64F);

    alpha = std::min(alpha, 0.999f);

    for( int i = 0; i < N; i++ )
        for( int j = 0; j < N; j++ )
        {
            Point2f p((float)j*imageSize.width/(N-1), (float)i*imageSize.height/(N-1));
            uvec[0] = p;
            undistortPoints(uvec, vvec, cameraMatrix, distCoeffs, I, I);
            Point2f q = mapPointSpherical(vvec[0], alpha, 0, projType);
            if( xmin > q.x ) xmin = q.x;
            if( xmax < q.x ) xmax = q.x;
            if( ymin > q.y ) ymin = q.y;
            if( ymax < q.y ) ymax = q.y;
        }

    float scale = (float)std::min(dcenter.x/fabs(xmax), dcenter.x/fabs(xmin));
    Size dsize(destImageWidth, cvCeil(std::max(scale*fabs(ymin)*2, scale*fabs(ymax)*2)));
    dcenter.y = (dsize.height - 1)*0.5f;

    Mat mapxy(dsize, CV_32FC2);
wester committed
534
    double k1 = k[0], k2 = k[1], k3 = k[2], p1 = k[3], p2 = k[4], k4 = k[5], k5 = k[6], k6 = k[7];
wester committed
535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551
    double fx = cameraMatrix.at<double>(0,0), fy = cameraMatrix.at<double>(1,1), cx = scenter.x, cy = scenter.y;

    for( int y = 0; y < dsize.height; y++ )
    {
        Point2f* mxy = mapxy.ptr<Point2f>(y);
        for( int x = 0; x < dsize.width; x++ )
        {
            Point2f p = (Point2f((float)x, (float)y) - dcenter)*(1.f/scale);
            Point2f q = invMapPointSpherical(p, alpha, projType);
            if( q.x <= -FLT_MAX && q.y <= -FLT_MAX )
            {
                mxy[x] = Point2f(-1.f, -1.f);
                continue;
            }
            double x2 = q.x*q.x, y2 = q.y*q.y;
            double r2 = x2 + y2, _2xy = 2*q.x*q.y;
            double kr = 1 + ((k3*r2 + k2)*r2 + k1)*r2/(1 + ((k6*r2 + k5)*r2 + k4)*r2);
wester committed
552 553
            double u = fx*(q.x*kr + p1*_2xy + p2*(r2 + 2*x2)) + cx;
            double v = fy*(q.y*kr + p1*(r2 + 2*y2) + p2*_2xy) + cy;
wester committed
554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572

            mxy[x] = Point2f((float)u, (float)v);
        }
    }

    if(m1type == CV_32FC2)
    {
        _map1.create(mapxy.size(), mapxy.type());
        Mat map1 = _map1.getMat();
        mapxy.copyTo(map1);
        _map2.release();
    }
    else
        convertMaps(mapxy, Mat(), _map1, _map2, m1type, false);

    return scale;
}

/*  End of file  */