perf_optflow.cpp 10.5 KB
Newer Older
wester committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#include "perf_precomp.hpp"

using namespace std;
using namespace testing;
using namespace perf;

typedef pair<string, string> pair_string;

DEF_PARAM_TEST_1(ImagePair, pair_string);

//////////////////////////////////////////////////////
// BroxOpticalFlow

PERF_TEST_P(ImagePair, BroxOpticalFlow,
            Values<pair_string>(make_pair("gpu/opticalflow/frame0.png", "gpu/opticalflow/frame1.png")))
{
    declare.time(300);

    cv::Mat frame0 = readImage(GetParam().first, cv::IMREAD_GRAYSCALE);
    ASSERT_FALSE(frame0.empty());

    cv::Mat frame1 = readImage(GetParam().second, cv::IMREAD_GRAYSCALE);
    ASSERT_FALSE(frame1.empty());

    frame0.convertTo(frame0, CV_32FC1, 1.0 / 255.0);
    frame1.convertTo(frame1, CV_32FC1, 1.0 / 255.0);

    if (PERF_RUN_CUDA())
    {
        const cv::cuda::GpuMat d_frame0(frame0);
        const cv::cuda::GpuMat d_frame1(frame1);
        cv::cuda::GpuMat flow;

        cv::Ptr<cv::cuda::BroxOpticalFlow> d_alg =
                cv::cuda::BroxOpticalFlow::create(0.197 /*alpha*/, 50.0 /*gamma*/, 0.8 /*scale_factor*/,
                                                  10 /*inner_iterations*/, 77 /*outer_iterations*/, 10 /*solver_iterations*/);

        TEST_CYCLE() d_alg->calc(d_frame0, d_frame1, flow);

        cv::cuda::GpuMat flows[2];
        cv::cuda::split(flow, flows);

        cv::cuda::GpuMat u = flows[0];
        cv::cuda::GpuMat v = flows[1];

        CUDA_SANITY_CHECK(u, 1e-1);
        CUDA_SANITY_CHECK(v, 1e-1);
    }
    else
    {
        FAIL_NO_CPU();
    }
}

//////////////////////////////////////////////////////
// PyrLKOpticalFlowSparse

DEF_PARAM_TEST(ImagePair_Gray_NPts_WinSz_Levels_Iters, pair_string, bool, int, int, int, int);

PERF_TEST_P(ImagePair_Gray_NPts_WinSz_Levels_Iters, PyrLKOpticalFlowSparse,
            Combine(Values<pair_string>(make_pair("gpu/opticalflow/frame0.png", "gpu/opticalflow/frame1.png")),
                    Bool(),
                    Values(8000),
                    Values(21),
                    Values(1, 3),
                    Values(1, 30)))
{
    declare.time(20.0);

    const pair_string imagePair = GET_PARAM(0);
    const bool useGray = GET_PARAM(1);
    const int points = GET_PARAM(2);
    const int winSize = GET_PARAM(3);
    const int levels = GET_PARAM(4);
    const int iters = GET_PARAM(5);

a  
Kai Westerkamp committed
119
    const cv::Mat frame0 = readImage(imagePair.first, useGray ? cv::IMREAD_GRAYSCALE : cv::IMREAD_COLOR);
wester committed
120 121
    ASSERT_FALSE(frame0.empty());

a  
Kai Westerkamp committed
122
    const cv::Mat frame1 = readImage(imagePair.second, useGray ? cv::IMREAD_GRAYSCALE : cv::IMREAD_COLOR);
wester committed
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
    ASSERT_FALSE(frame1.empty());

    cv::Mat gray_frame;
    if (useGray)
        gray_frame = frame0;
    else
        cv::cvtColor(frame0, gray_frame, cv::COLOR_BGR2GRAY);

    cv::Mat pts;
    cv::goodFeaturesToTrack(gray_frame, pts, points, 0.01, 0.0);

    if (PERF_RUN_CUDA())
    {
        const cv::cuda::GpuMat d_pts(pts.reshape(2, 1));

        cv::Ptr<cv::cuda::SparsePyrLKOpticalFlow> d_pyrLK =
                cv::cuda::SparsePyrLKOpticalFlow::create(cv::Size(winSize, winSize),
                                                         levels - 1,
                                                         iters);

        const cv::cuda::GpuMat d_frame0(frame0);
        const cv::cuda::GpuMat d_frame1(frame1);
        cv::cuda::GpuMat nextPts;
        cv::cuda::GpuMat status;

        TEST_CYCLE() d_pyrLK->calc(d_frame0, d_frame1, d_pts, nextPts, status);

        CUDA_SANITY_CHECK(nextPts);
        CUDA_SANITY_CHECK(status);
    }
    else
    {
        cv::Mat nextPts;
        cv::Mat status;

        TEST_CYCLE()
        {
            cv::calcOpticalFlowPyrLK(frame0, frame1, pts, nextPts, status, cv::noArray(),
                                     cv::Size(winSize, winSize), levels - 1,
                                     cv::TermCriteria(cv::TermCriteria::COUNT + cv::TermCriteria::EPS, iters, 0.01));
        }

        CPU_SANITY_CHECK(nextPts);
        CPU_SANITY_CHECK(status);
    }
}

//////////////////////////////////////////////////////
// PyrLKOpticalFlowDense

DEF_PARAM_TEST(ImagePair_WinSz_Levels_Iters, pair_string, int, int, int);

PERF_TEST_P(ImagePair_WinSz_Levels_Iters, PyrLKOpticalFlowDense,
            Combine(Values<pair_string>(make_pair("gpu/opticalflow/frame0.png", "gpu/opticalflow/frame1.png")),
                    Values(3, 5, 7, 9, 13, 17, 21),
                    Values(1, 3),
                    Values(1, 10)))
{
    declare.time(30);

    const pair_string imagePair = GET_PARAM(0);
    const int winSize = GET_PARAM(1);
    const int levels = GET_PARAM(2);
    const int iters = GET_PARAM(3);

    const cv::Mat frame0 = readImage(imagePair.first, cv::IMREAD_GRAYSCALE);
    ASSERT_FALSE(frame0.empty());

    const cv::Mat frame1 = readImage(imagePair.second, cv::IMREAD_GRAYSCALE);
    ASSERT_FALSE(frame1.empty());

    if (PERF_RUN_CUDA())
    {
        const cv::cuda::GpuMat d_frame0(frame0);
        const cv::cuda::GpuMat d_frame1(frame1);
        cv::cuda::GpuMat flow;

        cv::Ptr<cv::cuda::DensePyrLKOpticalFlow> d_pyrLK =
                cv::cuda::DensePyrLKOpticalFlow::create(cv::Size(winSize, winSize),
                                                        levels - 1,
                                                        iters);

        TEST_CYCLE() d_pyrLK->calc(d_frame0, d_frame1, flow);

        cv::cuda::GpuMat flows[2];
        cv::cuda::split(flow, flows);

        cv::cuda::GpuMat u = flows[0];
        cv::cuda::GpuMat v = flows[1];

        // Sanity test fails on Maxwell and CUDA 7.0
        SANITY_CHECK_NOTHING();
    }
    else
    {
        FAIL_NO_CPU();
    }
}

//////////////////////////////////////////////////////
// FarnebackOpticalFlow

PERF_TEST_P(ImagePair, FarnebackOpticalFlow,
            Values<pair_string>(make_pair("gpu/opticalflow/frame0.png", "gpu/opticalflow/frame1.png")))
{
    declare.time(10);

    const cv::Mat frame0 = readImage(GetParam().first, cv::IMREAD_GRAYSCALE);
    ASSERT_FALSE(frame0.empty());

    const cv::Mat frame1 = readImage(GetParam().second, cv::IMREAD_GRAYSCALE);
    ASSERT_FALSE(frame1.empty());

    const int numLevels = 5;
    const double pyrScale = 0.5;
    const int winSize = 13;
    const int numIters = 10;
    const int polyN = 5;
    const double polySigma = 1.1;
    const int flags = 0;

    if (PERF_RUN_CUDA())
    {
        const cv::cuda::GpuMat d_frame0(frame0);
        const cv::cuda::GpuMat d_frame1(frame1);
        cv::cuda::GpuMat flow;

        cv::Ptr<cv::cuda::FarnebackOpticalFlow> d_farneback =
                cv::cuda::FarnebackOpticalFlow::create(numLevels, pyrScale, false, winSize,
                                                       numIters, polyN, polySigma, flags);

        TEST_CYCLE() d_farneback->calc(d_frame0, d_frame1, flow);

        cv::cuda::GpuMat flows[2];
        cv::cuda::split(flow, flows);

        cv::cuda::GpuMat u = flows[0];
        cv::cuda::GpuMat v = flows[1];

        CUDA_SANITY_CHECK(u, 1e-4);
        CUDA_SANITY_CHECK(v, 1e-4);
    }
    else
    {
        cv::Mat flow;

        TEST_CYCLE() cv::calcOpticalFlowFarneback(frame0, frame1, flow, pyrScale, numLevels, winSize, numIters, polyN, polySigma, flags);

        CPU_SANITY_CHECK(flow);
    }
}

//////////////////////////////////////////////////////
// OpticalFlowDual_TVL1

PERF_TEST_P(ImagePair, OpticalFlowDual_TVL1,
            Values<pair_string>(make_pair("gpu/opticalflow/frame0.png", "gpu/opticalflow/frame1.png")))
{
    declare.time(20);

    const cv::Mat frame0 = readImage(GetParam().first, cv::IMREAD_GRAYSCALE);
    ASSERT_FALSE(frame0.empty());

    const cv::Mat frame1 = readImage(GetParam().second, cv::IMREAD_GRAYSCALE);
    ASSERT_FALSE(frame1.empty());

    if (PERF_RUN_CUDA())
    {
        const cv::cuda::GpuMat d_frame0(frame0);
        const cv::cuda::GpuMat d_frame1(frame1);
        cv::cuda::GpuMat flow;

        cv::Ptr<cv::cuda::OpticalFlowDual_TVL1> d_alg =
                cv::cuda::OpticalFlowDual_TVL1::create();

        TEST_CYCLE() d_alg->calc(d_frame0, d_frame1, flow);

        cv::cuda::GpuMat flows[2];
        cv::cuda::split(flow, flows);

        cv::cuda::GpuMat u = flows[0];
        cv::cuda::GpuMat v = flows[1];

        CUDA_SANITY_CHECK(u, 1e-1);
        CUDA_SANITY_CHECK(v, 1e-1);
    }
    else
    {
        cv::Mat flow;

        cv::Ptr<cv::DualTVL1OpticalFlow> alg = cv::createOptFlow_DualTVL1();
        alg->setMedianFiltering(1);
        alg->setInnerIterations(1);
        alg->setOuterIterations(300);
        TEST_CYCLE() alg->calc(frame0, frame1, flow);

        CPU_SANITY_CHECK(flow);
    }
a  
Kai Westerkamp committed
321
}