ImathRoots.h 5.69 KB
Newer Older
wester committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
///////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2002, Industrial Light & Magic, a division of Lucas
// Digital Ltd. LLC
//
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
// *       Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// *       Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// *       Neither the name of Industrial Light & Magic nor the names of
// its contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
///////////////////////////////////////////////////////////////////////////



#ifndef INCLUDED_IMATHROOTS_H
#define INCLUDED_IMATHROOTS_H

//---------------------------------------------------------------------
//
//	Functions to solve linear, quadratic or cubic equations
//
//---------------------------------------------------------------------

#include <ImathMath.h>
#include <complex>

namespace Imath {

//--------------------------------------------------------------------------
// Find the real solutions of a linear, quadratic or cubic equation:
//
//   	function				   equation solved
//
//   solveLinear (a, b, x)		                      a * x + b == 0
//   solveQuadratic (a, b, c, x)	            a * x*x + b * x + c == 0
//   solveNormalizedCubic (r, s, t, x)	    x*x*x + r * x*x + s * x + t == 0
//   solveCubic (a, b, c, d, x)		a * x*x*x + b * x*x + c * x + d == 0
//
// Return value:
//
//	 3	three real solutions, stored in x[0], x[1] and x[2]
//	 2	two real solutions, stored in x[0] and x[1]
//	 1	one real solution, stored in x[1]
//	 0	no real solutions
//	-1	all real numbers are solutions
//
// Notes:
//
//    * It is possible that an equation has real solutions, but that the
//	solutions (or some intermediate result) are not representable.
//	In this case, either some of the solutions returned are invalid
//	(nan or infinity), or, if floating-point exceptions have been
//	enabled with Iex::mathExcOn(), an Iex::MathExc exception is
//	thrown.
//
//    * Cubic equations are solved using Cardano's Formula; even though
//	only real solutions are produced, some intermediate results are
//	complex (std::complex<T>).
//
//--------------------------------------------------------------------------

template <class T> int	solveLinear (T a, T b, T &x);
template <class T> int	solveQuadratic (T a, T b, T c, T x[2]);
template <class T> int	solveNormalizedCubic (T r, T s, T t, T x[3]);
template <class T> int	solveCubic (T a, T b, T c, T d, T x[3]);


//---------------
// Implementation
//---------------

template <class T>
int
solveLinear (T a, T b, T &x)
{
    if (a != 0)
    {
    x = -b / a;
    return 1;
    }
    else if (b != 0)
    {
    return 0;
    }
    else
    {
    return -1;
    }
}


template <class T>
int
solveQuadratic (T a, T b, T c, T x[2])
{
    if (a == 0)
    {
    return solveLinear (b, c, x[0]);
    }
    else
    {
    T D = b * b - 4 * a * c;

    if (D > 0)
    {
        T s = Math<T>::sqrt (D);
        T q = -(b + (b > 0 ? 1 : -1) * s) / T(2);

        x[0] = q / a;
        x[1] = c / q;
        return 2;
    }
    if (D == 0)
    {
        x[0] = -b / (2 * a);
        return 1;
    }
    else
    {
        return 0;
    }
    }
}


template <class T>
int
solveNormalizedCubic (T r, T s, T t, T x[3])
{
    T p  = (3 * s - r * r) / 3;
    T q  = 2 * r * r * r / 27 - r * s / 3 + t;
    T p3 = p / 3;
    T q2 = q / 2;
    T D  = p3 * p3 * p3 + q2 * q2;

    if (D == 0 && p3 == 0)
    {
    x[0] = -r / 3;
    x[1] = -r / 3;
    x[2] = -r / 3;
    return 1;
    }

    std::complex<T> u = std::pow (-q / 2 + std::sqrt (std::complex<T> (D)),
                  T (1) / T (3));

    std::complex<T> v = -p / (T (3) * u);

    const T sqrt3 = T (1.73205080756887729352744634150587); // enough digits
                                // for long double
    std::complex<T> y0 (u + v);

    std::complex<T> y1 (-(u + v) / T (2) +
             (u - v) / T (2) * std::complex<T> (0, sqrt3));

    std::complex<T> y2 (-(u + v) / T (2) -
             (u - v) / T (2) * std::complex<T> (0, sqrt3));

    if (D > 0)
    {
    x[0] = y0.real() - r / 3;
    return 1;
    }
    else if (D == 0)
    {
    x[0] = y0.real() - r / 3;
    x[1] = y1.real() - r / 3;
    return 2;
    }
    else
    {
    x[0] = y0.real() - r / 3;
    x[1] = y1.real() - r / 3;
    x[2] = y2.real() - r / 3;
    return 3;
    }
}


template <class T>
int
solveCubic (T a, T b, T c, T d, T x[3])
{
    if (a == 0)
    {
    return solveQuadratic (b, c, d, x);
    }
    else
    {
    return solveNormalizedCubic (b / a, c / a, d / a, x);
    }
}


} // namespace Imath

#endif