test_solvepnp_ransac.cpp 10.3 KB
Newer Older
wester committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#include "test_precomp.hpp"
wester committed
44
#include "opencv2/core/internal.hpp"
wester committed
45 46 47 48 49 50 51 52 53

using namespace cv;
using namespace std;

class CV_solvePnPRansac_Test : public cvtest::BaseTest
{
public:
    CV_solvePnPRansac_Test()
    {
wester committed
54 55 56
        eps[CV_ITERATIVE] = 1.0e-2;
        eps[CV_EPNP] = 1.0e-2;
        eps[CV_P3P] = 1.0e-2;
wester committed
57 58 59 60
        totalTestsCount = 10;
    }
    ~CV_solvePnPRansac_Test() {}
protected:
a  
Kai Westerkamp committed
61 62
    void generate3DPointCloud(vector<Point3f>& points, Point3f pmin = Point3f(-1,
        -1, 5), Point3f pmax = Point3f(1, 1, 10))
wester committed
63
    {
a  
Kai Westerkamp committed
64
        const Point3f delta = pmax - pmin;
wester committed
65 66
        for (size_t i = 0; i < points.size(); i++)
        {
a  
Kai Westerkamp committed
67 68 69 70 71 72 73
            Point3f p(float(rand()) / RAND_MAX, float(rand()) / RAND_MAX,
                float(rand()) / RAND_MAX);
            p.x *= delta.x;
            p.y *= delta.y;
            p.z *= delta.z;
            p = p + pmin;
            points[i] = p;
wester committed
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
        }
    }

    void generateCameraMatrix(Mat& cameraMatrix, RNG& rng)
    {
        const double fcMinVal = 1e-3;
        const double fcMaxVal = 100;
        cameraMatrix.create(3, 3, CV_64FC1);
        cameraMatrix.setTo(Scalar(0));
        cameraMatrix.at<double>(0,0) = rng.uniform(fcMinVal, fcMaxVal);
        cameraMatrix.at<double>(1,1) = rng.uniform(fcMinVal, fcMaxVal);
        cameraMatrix.at<double>(0,2) = rng.uniform(fcMinVal, fcMaxVal);
        cameraMatrix.at<double>(1,2) = rng.uniform(fcMinVal, fcMaxVal);
        cameraMatrix.at<double>(2,2) = 1;
    }

    void generateDistCoeffs(Mat& distCoeffs, RNG& rng)
    {
        distCoeffs = Mat::zeros(4, 1, CV_64FC1);
        for (int i = 0; i < 3; i++)
            distCoeffs.at<double>(i,0) = rng.uniform(0.0, 1.0e-6);
    }

    void generatePose(Mat& rvec, Mat& tvec, RNG& rng)
    {
        const double minVal = 1.0e-3;
        const double maxVal = 1.0;
        rvec.create(3, 1, CV_64FC1);
        tvec.create(3, 1, CV_64FC1);
        for (int i = 0; i < 3; i++)
        {
            rvec.at<double>(i,0) = rng.uniform(minVal, maxVal);
            tvec.at<double>(i,0) = rng.uniform(minVal, maxVal/10);
        }
    }

    virtual bool runTest(RNG& rng, int mode, int method, const vector<Point3f>& points, const double* epsilon, double& maxError)
    {
        Mat rvec, tvec;
        vector<int> inliers;
        Mat trueRvec, trueTvec;
        Mat intrinsics, distCoeffs;
        generateCameraMatrix(intrinsics, rng);
        if (mode == 0)
            distCoeffs = Mat::zeros(4, 1, CV_64FC1);
        else
            generateDistCoeffs(distCoeffs, rng);
        generatePose(trueRvec, trueTvec, rng);

        vector<Point2f> projectedPoints;
        projectedPoints.resize(points.size());
        projectPoints(Mat(points), trueRvec, trueTvec, intrinsics, distCoeffs, projectedPoints);
        for (size_t i = 0; i < projectedPoints.size(); i++)
        {
            if (i % 20 == 0)
            {
                projectedPoints[i] = projectedPoints[rng.uniform(0,(int)points.size()-1)];
            }
        }

a  
Kai Westerkamp committed
134
        solvePnPRansac(points, projectedPoints, intrinsics, distCoeffs, rvec, tvec,
wester committed
135
            false, 500, 0.5, -1, inliers, method);
wester committed
136 137 138 139 140 141 142 143 144 145 146 147 148

        bool isTestSuccess = inliers.size() >= points.size()*0.95;

        double rvecDiff = norm(rvec-trueRvec), tvecDiff = norm(tvec-trueTvec);
        isTestSuccess = isTestSuccess && rvecDiff < epsilon[method] && tvecDiff < epsilon[method];
        double error = rvecDiff > tvecDiff ? rvecDiff : tvecDiff;
        //cout << error << " " << inliers.size() << " " << eps[method] << endl;
        if (error > maxError)
            maxError = error;

        return isTestSuccess;
    }

a  
Kai Westerkamp committed
149
    void run(int)
wester committed
150 151 152
    {
        ts->set_failed_test_info(cvtest::TS::OK);

wester committed
153
        vector<Point3f> points;
a  
Kai Westerkamp committed
154
        const int pointsCount = 500;
wester committed
155 156 157
        points.resize(pointsCount);
        generate3DPointCloud(points);

wester committed
158 159

        const int methodsCount = 3;
wester committed
160 161 162 163 164
        RNG rng = ts->get_rng();


        for (int mode = 0; mode < 2; mode++)
        {
a  
Kai Westerkamp committed
165
            for (int method = 0; method < methodsCount; method++)
wester committed
166 167 168 169 170 171 172 173
            {
                double maxError = 0;
                int successfulTestsCount = 0;
                for (int testIndex = 0; testIndex < totalTestsCount; testIndex++)
                {
                    if (runTest(rng, mode, method, points, eps, maxError))
                        successfulTestsCount++;
                }
a  
Kai Westerkamp committed
174
                //cout <<  maxError << " " << successfulTestsCount << endl;
wester committed
175 176 177 178 179 180 181 182 183
                if (successfulTestsCount < 0.7*totalTestsCount)
                {
                    ts->printf( cvtest::TS::LOG, "Invalid accuracy for method %d, failed %d tests from %d, maximum error equals %f, distortion mode equals %d\n",
                        method, totalTestsCount - successfulTestsCount, totalTestsCount, maxError, mode);
                    ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY);
                }
            }
        }
    }
wester committed
184
    double eps[3];
wester committed
185 186 187 188 189 190 191 192
    int totalTestsCount;
};

class CV_solvePnP_Test : public CV_solvePnPRansac_Test
{
public:
    CV_solvePnP_Test()
    {
wester committed
193 194 195
        eps[CV_ITERATIVE] = 1.0e-6;
        eps[CV_EPNP] = 1.0e-6;
        eps[CV_P3P] = 1.0e-4;
wester committed
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
        totalTestsCount = 1000;
    }

    ~CV_solvePnP_Test() {}
protected:
    virtual bool runTest(RNG& rng, int mode, int method, const vector<Point3f>& points, const double* epsilon, double& maxError)
    {
        Mat rvec, tvec;
        Mat trueRvec, trueTvec;
        Mat intrinsics, distCoeffs;
        generateCameraMatrix(intrinsics, rng);
        if (mode == 0)
            distCoeffs = Mat::zeros(4, 1, CV_64FC1);
        else
            generateDistCoeffs(distCoeffs, rng);
        generatePose(trueRvec, trueTvec, rng);

        std::vector<Point3f> opoints;
a  
Kai Westerkamp committed
214 215 216 217 218 219
        if (method == 2)
        {
            opoints = std::vector<Point3f>(points.begin(), points.begin()+4);
        }
        else
            opoints = points;
wester committed
220 221 222 223 224

        vector<Point2f> projectedPoints;
        projectedPoints.resize(opoints.size());
        projectPoints(Mat(opoints), trueRvec, trueTvec, intrinsics, distCoeffs, projectedPoints);

a  
Kai Westerkamp committed
225 226
        solvePnP(opoints, projectedPoints, intrinsics, distCoeffs, rvec, tvec,
            false, method);
wester committed
227 228 229 230 231 232 233 234 235 236 237 238

        double rvecDiff = norm(rvec-trueRvec), tvecDiff = norm(tvec-trueTvec);
        bool isTestSuccess = rvecDiff < epsilon[method] && tvecDiff < epsilon[method];

        double error = rvecDiff > tvecDiff ? rvecDiff : tvecDiff;
        if (error > maxError)
            maxError = error;

        return isTestSuccess;
    }
};

wester committed
239
TEST(DISABLED_Calib3d_SolvePnPRansac, accuracy) { CV_solvePnPRansac_Test test; test.safe_run(); }
wester committed
240 241
TEST(Calib3d_SolvePnP, accuracy) { CV_solvePnP_Test test; test.safe_run(); }

wester committed
242 243 244 245

#ifdef HAVE_TBB

TEST(DISABLED_Calib3d_SolvePnPRansac, concurrency)
wester committed
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
{
    int count = 7*13;

    Mat object(1, count, CV_32FC3);
    randu(object, -100, 100);

    Mat camera_mat(3, 3, CV_32FC1);
    randu(camera_mat, 0.5, 1);
    camera_mat.at<float>(0, 1) = 0.f;
    camera_mat.at<float>(1, 0) = 0.f;
    camera_mat.at<float>(2, 0) = 0.f;
    camera_mat.at<float>(2, 1) = 0.f;

    Mat dist_coef(1, 8, CV_32F, cv::Scalar::all(0));

    vector<cv::Point2f> image_vec;
    Mat rvec_gold(1, 3, CV_32FC1);
    randu(rvec_gold, 0, 1);
    Mat tvec_gold(1, 3, CV_32FC1);
    randu(tvec_gold, 0, 1);
    projectPoints(object, rvec_gold, tvec_gold, camera_mat, dist_coef, image_vec);

    Mat image(1, count, CV_32FC2, &image_vec[0]);

    Mat rvec1, rvec2;
    Mat tvec1, tvec2;

    {
        // limit concurrency to get deterministic result
wester committed
275 276
        cv::theRNG().state = 20121010;
        cv::Ptr<tbb::task_scheduler_init> one_thread = new tbb::task_scheduler_init(1);
wester committed
277 278 279
        solvePnPRansac(object, image, camera_mat, dist_coef, rvec1, tvec1);
    }

wester committed
280
    if(1)
wester committed
281 282 283 284 285 286 287 288 289 290 291 292 293
    {
        Mat rvec;
        Mat tvec;
        // parallel executions
        for(int i = 0; i < 10; ++i)
        {
            cv::theRNG().state = 20121010;
            solvePnPRansac(object, image, camera_mat, dist_coef, rvec, tvec);
        }
    }

    {
        // single thread again
wester committed
294 295
        cv::theRNG().state = 20121010;
        cv::Ptr<tbb::task_scheduler_init> one_thread = new tbb::task_scheduler_init(1);
wester committed
296 297 298
        solvePnPRansac(object, image, camera_mat, dist_coef, rvec2, tvec2);
    }

wester committed
299 300
    double rnorm = cv::norm(rvec1, rvec2, NORM_INF);
    double tnorm = cv::norm(tvec1, tvec2, NORM_INF);
wester committed
301 302 303 304 305

    EXPECT_LT(rnorm, 1e-6);
    EXPECT_LT(tnorm, 1e-6);

}
wester committed
306
#endif