freak_demo.cpp 5.29 KB
Newer Older
wester committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
//  demo.cpp
//
//	Here is an example on how to use the descriptor presented in the following paper:
//	A. Alahi, R. Ortiz, and P. Vandergheynst. FREAK: Fast Retina Keypoint. In IEEE Conference on Computer Vision and Pattern Recognition, 2012.
//  CVPR 2012 Open Source Award winner
//
//	Copyright (C) 2011-2012  Signal processing laboratory 2, EPFL,
//	Kirell Benzi (kirell.benzi@epfl.ch),
//	Raphael Ortiz (raphael.ortiz@a3.epfl.ch),
//	Alexandre Alahi (alexandre.alahi@epfl.ch)
//	and Pierre Vandergheynst (pierre.vandergheynst@epfl.ch)
//
//  Redistribution and use in source and binary forms, with or without modification,
//  are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
//  This software is provided by the copyright holders and contributors "as is" and
//  any express or implied warranties, including, but not limited to, the implied
//  warranties of merchantability and fitness for a particular purpose are disclaimed.
//  In no event shall the Intel Corporation or contributors be liable for any direct,
//  indirect, incidental, special, exemplary, or consequential damages
//  (including, but not limited to, procurement of substitute goods or services;
//  loss of use, data, or profits; or business interruption) however caused
//  and on any theory of liability, whether in contract, strict liability,
//  or tort (including negligence or otherwise) arising in any way out of
//  the use of this software, even if advised of the possibility of such damage.

#include "opencv2/opencv_modules.hpp"
#include <iostream>

#ifndef HAVE_OPENCV_NONFREE

int main(int, char**)
{
    std::cout << "The sample requires nonfree module that is not available in your OpenCV distribution." << std::endl;
    return -1;
}

#else

# include <string>
# include <vector>

# include <opencv2/core/core.hpp>
# include <opencv2/highgui/highgui.hpp>
# include <opencv2/features2d/features2d.hpp>
# include <opencv2/nonfree/features2d.hpp>
# include <opencv2/legacy/legacy.hpp>

using namespace cv;

static void help( char** argv )
{
    std::cout << "\nUsage: " << argv[0] << " [path/to/image1] [path/to/image2] \n"
              << "This is an example on how to use the keypoint descriptor presented in the following paper: \n"
              << "A. Alahi, R. Ortiz, and P. Vandergheynst. FREAK: Fast Retina Keypoint. \n"
              << "In IEEE Conference on Computer Vision and Pattern Recognition, 2012. CVPR 2012 Open Source Award winner \n"
              << std::endl;
}

int main( int argc, char** argv ) {
    // check http://docs.opencv.org/doc/tutorials/features2d/table_of_content_features2d/table_of_content_features2d.html
    // for OpenCV general detection/matching framework details

    if( argc != 3 ) {
        help(argv);
        return -1;
    }

    // Load images
    Mat imgA = imread(argv[1], CV_LOAD_IMAGE_GRAYSCALE );
    if( !imgA.data ) {
        std::cout<< " --(!) Error reading image " << argv[1] << std::endl;
        return -1;
    }

    Mat imgB = imread(argv[2], CV_LOAD_IMAGE_GRAYSCALE );
    if( !imgB.data ) {
        std::cout << " --(!) Error reading image " << argv[2] << std::endl;
        return -1;
    }

    std::vector<KeyPoint> keypointsA, keypointsB;
    Mat descriptorsA, descriptorsB;
    std::vector<DMatch> matches;

    // DETECTION
    // Any openCV detector such as
    SurfFeatureDetector detector(2000,4);

    // DESCRIPTOR
    // Our proposed FREAK descriptor
    // (rotation invariance, scale invariance, pattern radius corresponding to SMALLEST_KP_SIZE,
    // number of octaves, optional vector containing the selected pairs)
    // FREAK extractor(true, true, 22, 4, std::vector<int>());
    FREAK extractor;

    // MATCHER
    // The standard Hamming distance can be used such as
    // BruteForceMatcher<Hamming> matcher;
    // or the proposed cascade of hamming distance using SSSE3
    BruteForceMatcher<Hamming> matcher;

    // detect
    double t = (double)getTickCount();
    detector.detect( imgA, keypointsA );
    detector.detect( imgB, keypointsB );
    t = ((double)getTickCount() - t)/getTickFrequency();
    std::cout << "detection time [s]: " << t/1.0 << std::endl;

    // extract
    t = (double)getTickCount();
    extractor.compute( imgA, keypointsA, descriptorsA );
    extractor.compute( imgB, keypointsB, descriptorsB );
    t = ((double)getTickCount() - t)/getTickFrequency();
    std::cout << "extraction time [s]: " << t << std::endl;

    // match
    t = (double)getTickCount();
    matcher.match(descriptorsA, descriptorsB, matches);
    t = ((double)getTickCount() - t)/getTickFrequency();
    std::cout << "matching time [s]: " << t << std::endl;

    // Draw matches
    Mat imgMatch;
    drawMatches(imgA, keypointsA, imgB, keypointsB, matches, imgMatch);

    namedWindow("matches", CV_WINDOW_KEEPRATIO);
    imshow("matches", imgMatch);
    waitKey(0);
}

#endif