calib3d.cpp 11.6 KB
Newer Older
wester committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#include "precomp.hpp"

using namespace cv;
using namespace cv::cuda;

#if !defined HAVE_CUDA || !defined HAVE_OPENCV_CALIB3D || defined(CUDA_DISABLER)

void cv::cuda::transformPoints(const GpuMat&, const Mat&, const Mat&, GpuMat&, Stream&) { throw_no_cuda(); }

void cv::cuda::projectPoints(const GpuMat&, const Mat&, const Mat&, const Mat&, const Mat&, GpuMat&, Stream&) { throw_no_cuda(); }

void cv::cuda::solvePnPRansac(const Mat&, const Mat&, const Mat&, const Mat&, Mat&, Mat&, bool, int, float, int, std::vector<int>*) { throw_no_cuda(); }

#else

namespace cv { namespace cuda { namespace device
{
    namespace transform_points
    {
        void call(const PtrStepSz<float3> src, const float* rot, const float* transl, PtrStepSz<float3> dst, cudaStream_t stream);
    }

    namespace project_points
    {
        void call(const PtrStepSz<float3> src, const float* rot, const float* transl, const float* proj, PtrStepSz<float2> dst, cudaStream_t stream);
    }

    namespace solve_pnp_ransac
    {
        int maxNumIters();

        void computeHypothesisScores(
                const int num_hypotheses, const int num_points, const float* rot_matrices,
                const float3* transl_vectors, const float3* object, const float2* image,
                const float dist_threshold, int* hypothesis_scores);
    }
}}}

using namespace ::cv::cuda::device;

namespace
{
    void transformPointsCaller(const GpuMat& src, const Mat& rvec, const Mat& tvec, GpuMat& dst, cudaStream_t stream)
    {
        CV_Assert(src.rows == 1 && src.cols > 0 && src.type() == CV_32FC3);
        CV_Assert(rvec.size() == Size(3, 1) && rvec.type() == CV_32F);
        CV_Assert(tvec.size() == Size(3, 1) && tvec.type() == CV_32F);

        // Convert rotation vector into matrix
        Mat rot;
        Rodrigues(rvec, rot);

        dst.create(src.size(), src.type());
        transform_points::call(src, rot.ptr<float>(), tvec.ptr<float>(), dst, stream);
    }
}

void cv::cuda::transformPoints(const GpuMat& src, const Mat& rvec, const Mat& tvec, GpuMat& dst, Stream& stream)
{
    transformPointsCaller(src, rvec, tvec, dst, StreamAccessor::getStream(stream));
}

namespace
{
    void projectPointsCaller(const GpuMat& src, const Mat& rvec, const Mat& tvec, const Mat& camera_mat, const Mat& dist_coef, GpuMat& dst, cudaStream_t stream)
    {
        CV_Assert(src.rows == 1 && src.cols > 0 && src.type() == CV_32FC3);
        CV_Assert(rvec.size() == Size(3, 1) && rvec.type() == CV_32F);
        CV_Assert(tvec.size() == Size(3, 1) && tvec.type() == CV_32F);
        CV_Assert(camera_mat.size() == Size(3, 3) && camera_mat.type() == CV_32F);
        CV_Assert(dist_coef.empty()); // Undistortion isn't supported

        // Convert rotation vector into matrix
        Mat rot;
        Rodrigues(rvec, rot);

        dst.create(src.size(), CV_32FC2);
        project_points::call(src, rot.ptr<float>(), tvec.ptr<float>(), camera_mat.ptr<float>(), dst,stream);
    }
}

void cv::cuda::projectPoints(const GpuMat& src, const Mat& rvec, const Mat& tvec, const Mat& camera_mat, const Mat& dist_coef, GpuMat& dst, Stream& stream)
{
    projectPointsCaller(src, rvec, tvec, camera_mat, dist_coef, dst, StreamAccessor::getStream(stream));
}

namespace
{
    // Selects subset_size random different points from [0, num_points - 1] range
    void selectRandom(int subset_size, int num_points, std::vector<int>& subset)
    {
        subset.resize(subset_size);
        for (int i = 0; i < subset_size; ++i)
        {
            bool was;
            do
            {
                subset[i] = rand() % num_points;
                was = false;
                for (int j = 0; j < i; ++j)
                    if (subset[j] == subset[i])
                    {
                        was = true;
                        break;
                    }
            } while (was);
        }
    }

    // Computes rotation, translation pair for small subsets if the input data
    class TransformHypothesesGenerator : public ParallelLoopBody
    {
    public:
        TransformHypothesesGenerator(const Mat& object_, const Mat& image_, const Mat& dist_coef_,
                                     const Mat& camera_mat_, int num_points_, int subset_size_,
                                     Mat rot_matrices_, Mat transl_vectors_)
                : object(&object_), image(&image_), dist_coef(&dist_coef_), camera_mat(&camera_mat_),
                  num_points(num_points_), subset_size(subset_size_), rot_matrices(rot_matrices_),
                  transl_vectors(transl_vectors_) {}

        void operator()(const Range& range) const
        {
            // Input data for generation of the current hypothesis
            std::vector<int> subset_indices(subset_size);
            Mat_<Point3f> object_subset(1, subset_size);
            Mat_<Point2f> image_subset(1, subset_size);

            // Current hypothesis data
            Mat rot_vec(1, 3, CV_64F);
            Mat rot_mat(3, 3, CV_64F);
            Mat transl_vec(1, 3, CV_64F);

            for (int iter = range.start; iter < range.end; ++iter)
            {
                selectRandom(subset_size, num_points, subset_indices);
                for (int i = 0; i < subset_size; ++i)
                {
                   object_subset(0, i) = object->at<Point3f>(subset_indices[i]);
                   image_subset(0, i) = image->at<Point2f>(subset_indices[i]);
                }

                solvePnP(object_subset, image_subset, *camera_mat, *dist_coef, rot_vec, transl_vec);

                // Remember translation vector
                Mat transl_vec_ = transl_vectors.colRange(iter * 3, (iter + 1) * 3);
                transl_vec = transl_vec.reshape(0, 1);
                transl_vec.convertTo(transl_vec_, CV_32F);

                // Remember rotation matrix
                Rodrigues(rot_vec, rot_mat);
                Mat rot_mat_ = rot_matrices.colRange(iter * 9, (iter + 1) * 9).reshape(0, 3);
                rot_mat.convertTo(rot_mat_, CV_32F);
            }
        }

        const Mat* object;
        const Mat* image;
        const Mat* dist_coef;
        const Mat* camera_mat;
        int num_points;
        int subset_size;

        // Hypotheses storage (global)
        Mat rot_matrices;
        Mat transl_vectors;
    };
}

void cv::cuda::solvePnPRansac(const Mat& object, const Mat& image, const Mat& camera_mat,
                             const Mat& dist_coef, Mat& rvec, Mat& tvec, bool use_extrinsic_guess,
                             int num_iters, float max_dist, int min_inlier_count,
                             std::vector<int>* inliers)
{
    (void)min_inlier_count;
    CV_Assert(object.rows == 1 && object.cols > 0 && object.type() == CV_32FC3);
    CV_Assert(image.rows == 1 && image.cols > 0 && image.type() == CV_32FC2);
    CV_Assert(object.cols == image.cols);
    CV_Assert(camera_mat.size() == Size(3, 3) && camera_mat.type() == CV_32F);
    CV_Assert(!use_extrinsic_guess); // We don't support initial guess for now
    CV_Assert(num_iters <= solve_pnp_ransac::maxNumIters());

    const int subset_size = 4;
    const int num_points = object.cols;
    CV_Assert(num_points >= subset_size);

    // Unapply distortion and intrinsic camera transformations
    Mat eye_camera_mat = Mat::eye(3, 3, CV_32F);
    Mat empty_dist_coef;
    Mat image_normalized;
    undistortPoints(image, image_normalized, camera_mat, dist_coef, Mat(), eye_camera_mat);

    // Hypotheses storage (global)
    Mat rot_matrices(1, num_iters * 9, CV_32F);
    Mat transl_vectors(1, num_iters * 3, CV_32F);

    // Generate set of hypotheses using small subsets of the input data
    TransformHypothesesGenerator body(object, image_normalized, empty_dist_coef, eye_camera_mat,
                                      num_points, subset_size, rot_matrices, transl_vectors);
    parallel_for_(Range(0, num_iters), body);

    // Compute scores (i.e. number of inliers) for each hypothesis
    GpuMat d_object(object);
    GpuMat d_image_normalized(image_normalized);
    GpuMat d_hypothesis_scores(1, num_iters, CV_32S);
    solve_pnp_ransac::computeHypothesisScores(
            num_iters, num_points, rot_matrices.ptr<float>(), transl_vectors.ptr<float3>(),
            d_object.ptr<float3>(), d_image_normalized.ptr<float2>(), max_dist * max_dist,
            d_hypothesis_scores.ptr<int>());

    // Find the best hypothesis index
    Point best_idx;
    double best_score;
    cuda::minMaxLoc(d_hypothesis_scores, NULL, &best_score, NULL, &best_idx);
    int num_inliers = static_cast<int>(best_score);

    // Extract the best hypothesis data

    Mat rot_mat = rot_matrices.colRange(best_idx.x * 9, (best_idx.x + 1) * 9).reshape(0, 3);
    Rodrigues(rot_mat, rvec);
    rvec = rvec.reshape(0, 1);

    tvec = transl_vectors.colRange(best_idx.x * 3, (best_idx.x + 1) * 3).clone();
    tvec = tvec.reshape(0, 1);

    // Build vector of inlier indices
    if (inliers != NULL)
    {
        inliers->clear();
        inliers->reserve(num_inliers);

        Point3f p, p_transf;
        Point2f p_proj;
        const float* rot = rot_mat.ptr<float>();
        const float* transl = tvec.ptr<float>();

        for (int i = 0; i < num_points; ++i)
        {
            p = object.at<Point3f>(0, i);
            p_transf.x = rot[0] * p.x + rot[1] * p.y + rot[2] * p.z + transl[0];
            p_transf.y = rot[3] * p.x + rot[4] * p.y + rot[5] * p.z + transl[1];
            p_transf.z = rot[6] * p.x + rot[7] * p.y + rot[8] * p.z + transl[2];
            p_proj.x = p_transf.x / p_transf.z;
            p_proj.y = p_transf.y / p_transf.z;
            if (norm(p_proj - image_normalized.at<Point2f>(0, i)) < max_dist)
                inliers->push_back(i);
        }
    }
}

#endif