perf_affine2d.cpp 5.37 KB
Newer Older
wester committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//                        (3-clause BSD License)
//
// Copyright (C) 2015-2016, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistributions of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistributions in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * Neither the names of the copyright holders nor the names of the contributors
//     may be used to endorse or promote products derived from this software
//     without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall copyright holders or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#include "perf_precomp.hpp"
#include <algorithm>
#include <functional>

namespace cvtest
{

using std::tr1::tuple;
using std::tr1::get;
using namespace perf;
using namespace testing;
using namespace cv;

CV_ENUM(Method, RANSAC, LMEDS)
typedef tuple<int, double, Method, size_t> AffineParams;
typedef TestBaseWithParam<AffineParams> EstimateAffine;
#define ESTIMATE_PARAMS Combine(Values(100000, 5000, 100), Values(0.99, 0.95, 0.9), Method::all(), Values(10, 0))

static float rngIn(float from, float to) { return from + (to-from) * (float)theRNG(); }

static Mat rngPartialAffMat() {
    double theta = rngIn(0, (float)CV_PI*2.f);
    double scale = rngIn(0, 3);
    double tx = rngIn(-2, 2);
    double ty = rngIn(-2, 2);
    double aff[2*3] = { std::cos(theta) * scale, -std::sin(theta) * scale, tx,
                        std::sin(theta) * scale,  std::cos(theta) * scale, ty };
    return Mat(2, 3, CV_64F, aff).clone();
}

PERF_TEST_P( EstimateAffine, EstimateAffine2D, ESTIMATE_PARAMS )
{
    AffineParams params = GetParam();
    const int n = get<0>(params);
    const double confidence = get<1>(params);
    const int method = get<2>(params);
    const size_t refining = get<3>(params);

    Mat aff(2, 3, CV_64F);
    cv::randu(aff, -2., 2.);

    // LMEDS can't handle more than 50% outliers (by design)
    int m;
    if (method == LMEDS)
        m = 3*n/5;
    else
        m = 2*n/5;
    const float shift_outl = 15.f;
    const float noise_level = 20.f;

    Mat fpts(1, n, CV_32FC2);
    Mat tpts(1, n, CV_32FC2);

    randu(fpts, 0., 100.);
    transform(fpts, tpts, aff);

    /* adding noise to some points */
    Mat outliers = tpts.colRange(m, n);
    outliers.reshape(1) += shift_outl;

    Mat noise (outliers.size(), outliers.type());
    randu(noise, 0., noise_level);
    outliers += noise;

    Mat aff_est;
    vector<uchar> inliers (n);

    warmup(inliers, WARMUP_WRITE);
    warmup(fpts, WARMUP_READ);
    warmup(tpts, WARMUP_READ);

    TEST_CYCLE()
    {
        aff_est = estimateAffine2D(fpts, tpts, inliers, method, 3, 2000, confidence, refining);
    }

    // we already have accuracy tests
    SANITY_CHECK_NOTHING();
}

PERF_TEST_P( EstimateAffine, EstimateAffinePartial2D, ESTIMATE_PARAMS )
{
    AffineParams params = GetParam();
    const int n = get<0>(params);
    const double confidence = get<1>(params);
    const int method = get<2>(params);
    const size_t refining = get<3>(params);

    Mat aff = rngPartialAffMat();

    int m;
    // LMEDS can't handle more than 50% outliers (by design)
    if (method == LMEDS)
        m = 3*n/5;
    else
        m = 2*n/5;
    const float shift_outl = 15.f;    const float noise_level = 20.f;

    Mat fpts(1, n, CV_32FC2);
    Mat tpts(1, n, CV_32FC2);

    randu(fpts, 0., 100.);
    transform(fpts, tpts, aff);

    /* adding noise*/
    Mat outliers = tpts.colRange(m, n);
    outliers.reshape(1) += shift_outl;

    Mat noise (outliers.size(), outliers.type());
    randu(noise, 0., noise_level);
    outliers += noise;

    Mat aff_est;
    vector<uchar> inliers (n);

    warmup(inliers, WARMUP_WRITE);
    warmup(fpts, WARMUP_READ);
    warmup(tpts, WARMUP_READ);

    TEST_CYCLE()
    {
        aff_est = estimateAffinePartial2D(fpts, tpts, inliers, method, 3, 2000, confidence, refining);
    }

    // we already have accuracy tests
    SANITY_CHECK_NOTHING();
}

} // namespace cvtest