one_way_sample.cpp 4.05 KB
Newer Older
wester committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
/*
 *  one_way_sample.cpp
 *  outlet_detection
 *
 *  Created by Victor  Eruhimov on 8/5/09.
 *  Copyright 2009 Argus Corp. All rights reserved.
 *
 */

#include "opencv2/opencv_modules.hpp"
#include <stdio.h>

#ifndef HAVE_OPENCV_NONFREE

int main(int, char**)
{
    printf("The sample requires nonfree module that is not available in your OpenCV distribution.\n");
    return -1;
}

#else

# include "opencv2/imgproc/imgproc.hpp"
# include "opencv2/features2d/features2d.hpp"
# include "opencv2/highgui/highgui.hpp"
# include "opencv2/imgproc/imgproc_c.h"
# include "opencv2/nonfree/nonfree.hpp"
# include "opencv2/legacy/legacy.hpp"
# include "opencv2/legacy/compat.hpp"

#include <string>

static void help()
{
    printf("\nThis program demonstrates the one way interest point descriptor found in features2d.hpp\n"
            "Correspondences are drawn\n");
    printf("Format: \n./one_way_sample <path_to_samples> <image1> <image2>\n");
    printf("For example: ./one_way_sample . ../c/scene_l.bmp ../c/scene_r.bmp\n");
}

using namespace cv;

Mat DrawCorrespondences(const Mat& img1, const vector<KeyPoint>& features1, const Mat& img2,
                        const vector<KeyPoint>& features2, const vector<int>& desc_idx);

int main(int argc, char** argv)
{
    const char images_list[] = "one_way_train_images.txt";
    const CvSize patch_size = cvSize(24, 24);
    const int pose_count = 50;

    if (argc != 4)
    {
        help();
        return 0;
    }

    std::string path_name = argv[1];
    std::string img1_name = path_name + "/" + std::string(argv[2]);
    std::string img2_name = path_name + "/" + std::string(argv[3]);

    printf("Reading the images...\n");
    Mat img1 = imread(img1_name, CV_LOAD_IMAGE_GRAYSCALE);
    Mat img2 = imread(img2_name, CV_LOAD_IMAGE_GRAYSCALE);

    // extract keypoints from the first image
    SURF surf_extractor(5.0e3);
    vector<KeyPoint> keypoints1;

    // printf("Extracting keypoints\n");
    surf_extractor(img1, Mat(), keypoints1);

    printf("Extracted %d keypoints...\n", (int)keypoints1.size());

    printf("Training one way descriptors... \n");
    // create descriptors
    OneWayDescriptorBase descriptors(patch_size, pose_count, OneWayDescriptorBase::GetPCAFilename(), path_name,
                                     images_list);
    IplImage img1_c = img1;
    IplImage img2_c = img2;
    descriptors.CreateDescriptorsFromImage(&img1_c, keypoints1);
    printf("done\n");

    // extract keypoints from the second image
    vector<KeyPoint> keypoints2;
    surf_extractor(img2, Mat(), keypoints2);
    printf("Extracted %d keypoints from the second image...\n", (int)keypoints2.size());

    printf("Finding nearest neighbors...");
    // find NN for each of keypoints2 in keypoints1
    vector<int> desc_idx;
    desc_idx.resize(keypoints2.size());
    for (size_t i = 0; i < keypoints2.size(); i++)
    {
        int pose_idx = 0;
        float distance = 0;
        descriptors.FindDescriptor(&img2_c, keypoints2[i].pt, desc_idx[i], pose_idx, distance);
    }
    printf("done\n");

    Mat img_corr = DrawCorrespondences(img1, keypoints1, img2, keypoints2, desc_idx);

    imshow("correspondences", img_corr);
    waitKey(0);
}

Mat DrawCorrespondences(const Mat& img1, const vector<KeyPoint>& features1, const Mat& img2,
                        const vector<KeyPoint>& features2, const vector<int>& desc_idx)
{
    Mat part, img_corr(Size(img1.cols + img2.cols, MAX(img1.rows, img2.rows)), CV_8UC3);
    img_corr = Scalar::all(0);
    part = img_corr(Rect(0, 0, img1.cols, img1.rows));
    cvtColor(img1, part, COLOR_GRAY2RGB);
    part = img_corr(Rect(img1.cols, 0, img2.cols, img2.rows));
    cvtColor(img1, part, COLOR_GRAY2RGB);

    for (size_t i = 0; i < features1.size(); i++)
    {
        circle(img_corr, features1[i].pt, 3, CV_RGB(255, 0, 0));
    }

    for (size_t i = 0; i < features2.size(); i++)
    {
        Point pt((int)features2[i].pt.x + img1.cols, (int)features2[i].pt.y);
        circle(img_corr, pt, 3, Scalar(0, 0, 255));
        line(img_corr, features1[desc_idx[i]].pt, pt, Scalar(0, 255, 0));
    }

    return img_corr;
}

#endif