spatialgradient.cpp 12.4 KB
Newer Older
wester committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#include "precomp.hpp"
#include "opencv2/core/hal/intrin.hpp"

#include <iostream>
namespace cv
{

/* NOTE:
 *
 * Sobel-x: -1  0  1
 *          -2  0  2
 *          -1  0  1
 *
 * Sobel-y: -1 -2 -1
 *           0  0  0
 *           1  2  1
 */
template <typename T>
static inline void spatialGradientKernel( T& vx, T& vy,
                                          const T& v00, const T& v01, const T& v02,
                                          const T& v10,               const T& v12,
                                          const T& v20, const T& v21, const T& v22 )
{
    // vx = (v22 - v00) + (v02 - v20) + 2 * (v12 - v10)
    // vy = (v22 - v00) + (v20 - v02) + 2 * (v21 - v01)

    T tmp_add = v22 - v00,
      tmp_sub = v02 - v20,
      tmp_x   = v12 - v10,
      tmp_y   = v21 - v01;

    vx = tmp_add + tmp_sub + tmp_x + tmp_x;
    vy = tmp_add - tmp_sub + tmp_y + tmp_y;
}

void spatialGradient( InputArray _src, OutputArray _dx, OutputArray _dy,
                      int ksize, int borderType )
{

    // Prepare InputArray src
    Mat src = _src.getMat();
    CV_Assert( !src.empty() );
    CV_Assert( src.type() == CV_8UC1 );
    CV_Assert( borderType == BORDER_DEFAULT || borderType == BORDER_REPLICATE );

    // Prepare OutputArrays dx, dy
    _dx.create( src.size(), CV_16SC1 );
    _dy.create( src.size(), CV_16SC1 );
    Mat dx = _dx.getMat(),
        dy = _dy.getMat();

    // TODO: Allow for other kernel sizes
    CV_Assert(ksize == 3);

    // Get dimensions
    const int H = src.rows,
              W = src.cols;

    // Row, column indices
    int i = 0,
        j = 0;

    // Handle border types
    int i_top    = 0,     // Case for H == 1 && W == 1 && BORDER_REPLICATE
        i_bottom = H - 1,
        j_offl   = 0,     // j offset from 0th   pixel to reach -1st pixel
        j_offr   = 0;     // j offset from W-1th pixel to reach Wth  pixel

    if ( borderType == BORDER_DEFAULT ) // Equiv. to BORDER_REFLECT_101
    {
        if ( H > 1 )
        {
            i_top    = 1;
            i_bottom = H - 2;
        }
        if ( W > 1 )
        {
            j_offl = 1;
            j_offr = -1;
        }
    }

    // Pointer to row vectors
    uchar *p_src, *c_src, *n_src; // previous, current, next row
    short *c_dx,  *c_dy;

    int i_start = 0;
    int j_start = 0;
a  
Kai Westerkamp committed
131 132 133 134 135 136 137 138 139 140 141 142 143 144
#if CV_SIMD128 && CV_SSE2
    uchar *m_src;
    short *n_dx, *n_dy;

    // Characters in variable names have the following meanings:
    // u: unsigned char
    // s: signed int
    //
    // [row][column]
    // m: offset -1
    // n: offset  0
    // p: offset  1
    // Example: umn is offset -1 in row and offset 0 in column
    for ( i = 0; i < H - 1; i += 2 )
wester committed
145
    {
a  
Kai Westerkamp committed
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
        if   ( i == 0 ) p_src = src.ptr<uchar>(i_top);
        else            p_src = src.ptr<uchar>(i-1);

        c_src = src.ptr<uchar>(i);
        n_src = src.ptr<uchar>(i+1);

        if ( i == H - 2 ) m_src = src.ptr<uchar>(i_bottom);
        else              m_src = src.ptr<uchar>(i+2);

        c_dx = dx.ptr<short>(i);
        c_dy = dy.ptr<short>(i);
        n_dx = dx.ptr<short>(i+1);
        n_dy = dy.ptr<short>(i+1);

        v_uint8x16 v_select_m = v_uint8x16(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
                                           0, 0, 0, 0xFF);

        // Process rest of columns 16-column chunks at a time
        for ( j = 1; j < W - 16; j += 16 )
wester committed
165
        {
a  
Kai Westerkamp committed
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
            // Load top row for 3x3 Sobel filter
            v_uint8x16 v_um = v_load(&p_src[j-1]);
            v_uint8x16 v_up = v_load(&p_src[j+1]);
            // TODO: Replace _mm_slli_si128 with hal method
            v_uint8x16 v_un = v_select(v_select_m, v_uint8x16(_mm_slli_si128(v_up.val, 1)),
                                                   v_uint8x16(_mm_srli_si128(v_um.val, 1)));
            v_uint16x8 v_um1, v_um2, v_un1, v_un2, v_up1, v_up2;
            v_expand(v_um, v_um1, v_um2);
            v_expand(v_un, v_un1, v_un2);
            v_expand(v_up, v_up1, v_up2);
            v_int16x8 v_s1m1 = v_reinterpret_as_s16(v_um1);
            v_int16x8 v_s1m2 = v_reinterpret_as_s16(v_um2);
            v_int16x8 v_s1n1 = v_reinterpret_as_s16(v_un1);
            v_int16x8 v_s1n2 = v_reinterpret_as_s16(v_un2);
            v_int16x8 v_s1p1 = v_reinterpret_as_s16(v_up1);
            v_int16x8 v_s1p2 = v_reinterpret_as_s16(v_up2);

            // Load second row for 3x3 Sobel filter
            v_um = v_load(&c_src[j-1]);
            v_up = v_load(&c_src[j+1]);
            // TODO: Replace _mm_slli_si128 with hal method
            v_un = v_select(v_select_m, v_uint8x16(_mm_slli_si128(v_up.val, 1)),
                                        v_uint8x16(_mm_srli_si128(v_um.val, 1)));
            v_expand(v_um, v_um1, v_um2);
            v_expand(v_un, v_un1, v_un2);
            v_expand(v_up, v_up1, v_up2);
            v_int16x8 v_s2m1 = v_reinterpret_as_s16(v_um1);
            v_int16x8 v_s2m2 = v_reinterpret_as_s16(v_um2);
            v_int16x8 v_s2n1 = v_reinterpret_as_s16(v_un1);
            v_int16x8 v_s2n2 = v_reinterpret_as_s16(v_un2);
            v_int16x8 v_s2p1 = v_reinterpret_as_s16(v_up1);
            v_int16x8 v_s2p2 = v_reinterpret_as_s16(v_up2);

            // Load third row for 3x3 Sobel filter
            v_um = v_load(&n_src[j-1]);
            v_up = v_load(&n_src[j+1]);
            // TODO: Replace _mm_slli_si128 with hal method
            v_un = v_select(v_select_m, v_uint8x16(_mm_slli_si128(v_up.val, 1)),
                                        v_uint8x16(_mm_srli_si128(v_um.val, 1)));
            v_expand(v_um, v_um1, v_um2);
            v_expand(v_un, v_un1, v_un2);
            v_expand(v_up, v_up1, v_up2);
            v_int16x8 v_s3m1 = v_reinterpret_as_s16(v_um1);
            v_int16x8 v_s3m2 = v_reinterpret_as_s16(v_um2);
            v_int16x8 v_s3n1 = v_reinterpret_as_s16(v_un1);
            v_int16x8 v_s3n2 = v_reinterpret_as_s16(v_un2);
            v_int16x8 v_s3p1 = v_reinterpret_as_s16(v_up1);
            v_int16x8 v_s3p2 = v_reinterpret_as_s16(v_up2);

            // dx & dy for rows 1, 2, 3
            v_int16x8 v_sdx1, v_sdy1;
            spatialGradientKernel<v_int16x8>( v_sdx1, v_sdy1,
                                              v_s1m1, v_s1n1, v_s1p1,
                                              v_s2m1,         v_s2p1,
                                              v_s3m1, v_s3n1, v_s3p1 );

            v_int16x8 v_sdx2, v_sdy2;
            spatialGradientKernel<v_int16x8>( v_sdx2, v_sdy2,
                                              v_s1m2, v_s1n2, v_s1p2,
                                              v_s2m2,         v_s2p2,
                                              v_s3m2, v_s3n2, v_s3p2 );

            // Store
            v_store(&c_dx[j],   v_sdx1);
            v_store(&c_dx[j+8], v_sdx2);
            v_store(&c_dy[j],   v_sdy1);
            v_store(&c_dy[j+8], v_sdy2);

            // Load fourth row for 3x3 Sobel filter
            v_um = v_load(&m_src[j-1]);
            v_up = v_load(&m_src[j+1]);
            // TODO: Replace _mm_slli_si128 with hal method
            v_un = v_select(v_select_m, v_uint8x16(_mm_slli_si128(v_up.val, 1)),
                                        v_uint8x16(_mm_srli_si128(v_um.val, 1)));
            v_expand(v_um, v_um1, v_um2);
            v_expand(v_un, v_un1, v_un2);
            v_expand(v_up, v_up1, v_up2);
            v_int16x8 v_s4m1 = v_reinterpret_as_s16(v_um1);
            v_int16x8 v_s4m2 = v_reinterpret_as_s16(v_um2);
            v_int16x8 v_s4n1 = v_reinterpret_as_s16(v_un1);
            v_int16x8 v_s4n2 = v_reinterpret_as_s16(v_un2);
            v_int16x8 v_s4p1 = v_reinterpret_as_s16(v_up1);
            v_int16x8 v_s4p2 = v_reinterpret_as_s16(v_up2);

            // dx & dy for rows 2, 3, 4
            spatialGradientKernel<v_int16x8>( v_sdx1, v_sdy1,
                                              v_s2m1, v_s2n1, v_s2p1,
                                              v_s3m1,         v_s3p1,
                                              v_s4m1, v_s4n1, v_s4p1 );

            spatialGradientKernel<v_int16x8>( v_sdx2, v_sdy2,
                                              v_s2m2, v_s2n2, v_s2p2,
                                              v_s3m2,         v_s3p2,
                                              v_s4m2, v_s4n2, v_s4p2 );

            // Store
            v_store(&n_dx[j],   v_sdx1);
            v_store(&n_dx[j+8], v_sdx2);
            v_store(&n_dy[j],   v_sdy1);
            v_store(&n_dy[j+8], v_sdy2);
wester committed
266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
        }
    }
    i_start = i;
    j_start = j;
#endif
    int j_p, j_n;
    uchar v00, v01, v02, v10, v11, v12, v20, v21, v22;
    for ( i = 0; i < H; i++ )
    {
        if   ( i == 0 ) p_src = src.ptr<uchar>(i_top);
        else            p_src = src.ptr<uchar>(i-1);

        c_src = src.ptr<uchar>(i);

        if ( i == H - 1 ) n_src = src.ptr<uchar>(i_bottom);
        else              n_src = src.ptr<uchar>(i+1);

        c_dx = dx.ptr<short>(i);
        c_dy = dy.ptr<short>(i);

        // Process left-most column
        j = 0;
        j_p = j + j_offl;
        j_n = 1;
        if ( j_n >= W ) j_n = j + j_offr;
        v00 = p_src[j_p]; v01 = p_src[j]; v02 = p_src[j_n];
        v10 = c_src[j_p]; v11 = c_src[j]; v12 = c_src[j_n];
        v20 = n_src[j_p]; v21 = n_src[j]; v22 = n_src[j_n];
        spatialGradientKernel<short>( c_dx[0], c_dy[0], v00, v01, v02, v10,
                                      v12, v20, v21, v22 );
        v00 = v01; v10 = v11; v20 = v21;
        v01 = v02; v11 = v12; v21 = v22;

        // Process middle columns
        j = i >= i_start ? 1 : j_start;
        j_p = j - 1;
        v00 = p_src[j_p]; v01 = p_src[j];
        v10 = c_src[j_p]; v11 = c_src[j];
        v20 = n_src[j_p]; v21 = n_src[j];

        for ( ; j < W - 1; j++ )
        {
            // Get values for next column
            j_n = j + 1; v02 = p_src[j_n]; v12 = c_src[j_n]; v22 = n_src[j_n];
            spatialGradientKernel<short>( c_dx[j], c_dy[j], v00, v01, v02, v10,
                                          v12, v20, v21, v22 );

            // Move values back one column for next iteration
            v00 = v01; v10 = v11; v20 = v21;
            v01 = v02; v11 = v12; v21 = v22;
        }

        // Process right-most column
        if ( j < W )
        {
            j_n = j + j_offr; v02 = p_src[j_n]; v12 = c_src[j_n]; v22 = n_src[j_n];
            spatialGradientKernel<short>( c_dx[j], c_dy[j], v00, v01, v02, v10,
                                          v12, v20, v21, v22 );
        }
    }

}

}