generalized_hough.cu 32.4 KB
Newer Older
wester committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#if !defined CUDA_DISABLER

#include <thrust/device_ptr.h>
#include <thrust/transform.h>

#include "opencv2/core/cuda/common.hpp"
#include "opencv2/core/cuda/emulation.hpp"
#include "opencv2/core/cuda/vec_math.hpp"
#include "opencv2/core/cuda/functional.hpp"

#include "opencv2/opencv_modules.hpp"

#ifdef HAVE_OPENCV_CUDAARITHM

namespace cv { namespace cuda { namespace device
{
    namespace ght
    {
        __device__ int g_counter;

        template <typename T, int PIXELS_PER_THREAD>
        __global__ void buildEdgePointList(const PtrStepSzb edges, const PtrStep<T> dx, const PtrStep<T> dy,
                                           unsigned int* coordList, float* thetaList)
        {
            __shared__ unsigned int s_coordLists[4][32 * PIXELS_PER_THREAD];
            __shared__ float s_thetaLists[4][32 * PIXELS_PER_THREAD];
            __shared__ int s_sizes[4];
            __shared__ int s_globStart[4];

            const int x = blockIdx.x * blockDim.x * PIXELS_PER_THREAD + threadIdx.x;
            const int y = blockIdx.y * blockDim.y + threadIdx.y;

            if (threadIdx.x == 0)
                s_sizes[threadIdx.y] = 0;
            __syncthreads();

            if (y < edges.rows)
            {
                // fill the queue
                const uchar* edgesRow = edges.ptr(y);
                const T* dxRow = dx.ptr(y);
                const T* dyRow = dy.ptr(y);

                for (int i = 0, xx = x; i < PIXELS_PER_THREAD && xx < edges.cols; ++i, xx += blockDim.x)
                {
                    const T dxVal = dxRow[xx];
                    const T dyVal = dyRow[xx];

                    if (edgesRow[xx] && (dxVal != 0 || dyVal != 0))
                    {
                        const unsigned int coord = (y << 16) | xx;

                        float theta = ::atan2f(dyVal, dxVal);
                        if (theta < 0)
                            theta += 2.0f * CV_PI_F;

                        const int qidx = Emulation::smem::atomicAdd(&s_sizes[threadIdx.y], 1);

                        s_coordLists[threadIdx.y][qidx] = coord;
                        s_thetaLists[threadIdx.y][qidx] = theta;
                    }
                }
            }

            __syncthreads();

            // let one thread reserve the space required in the global list
            if (threadIdx.x == 0 && threadIdx.y == 0)
            {
                // find how many items are stored in each list
                int totalSize = 0;
                for (int i = 0; i < blockDim.y; ++i)
                {
                    s_globStart[i] = totalSize;
                    totalSize += s_sizes[i];
                }

                // calculate the offset in the global list
                const int globalOffset = atomicAdd(&g_counter, totalSize);
                for (int i = 0; i < blockDim.y; ++i)
                    s_globStart[i] += globalOffset;
            }

            __syncthreads();

            // copy local queues to global queue
            const int qsize = s_sizes[threadIdx.y];
            int gidx = s_globStart[threadIdx.y] + threadIdx.x;
            for(int i = threadIdx.x; i < qsize; i += blockDim.x, gidx += blockDim.x)
            {
                coordList[gidx] = s_coordLists[threadIdx.y][i];
                thetaList[gidx] = s_thetaLists[threadIdx.y][i];
            }
        }

        template <typename T>
        int buildEdgePointList_gpu(PtrStepSzb edges, PtrStepSzb dx, PtrStepSzb dy, unsigned int* coordList, float* thetaList)
        {
            const int PIXELS_PER_THREAD = 8;

            void* counterPtr;
            cudaSafeCall( cudaGetSymbolAddress(&counterPtr, g_counter) );

            cudaSafeCall( cudaMemset(counterPtr, 0, sizeof(int)) );

            const dim3 block(32, 4);
            const dim3 grid(divUp(edges.cols, block.x * PIXELS_PER_THREAD), divUp(edges.rows, block.y));

            cudaSafeCall( cudaFuncSetCacheConfig(buildEdgePointList<T, PIXELS_PER_THREAD>, cudaFuncCachePreferShared) );

            buildEdgePointList<T, PIXELS_PER_THREAD><<<grid, block>>>(edges, (PtrStepSz<T>) dx, (PtrStepSz<T>) dy, coordList, thetaList);
            cudaSafeCall( cudaGetLastError() );

            cudaSafeCall( cudaDeviceSynchronize() );

            int totalCount;
            cudaSafeCall( cudaMemcpy(&totalCount, counterPtr, sizeof(int), cudaMemcpyDeviceToHost) );

            return totalCount;
        }

        template int buildEdgePointList_gpu<short>(PtrStepSzb edges, PtrStepSzb dx, PtrStepSzb dy, unsigned int* coordList, float* thetaList);
        template int buildEdgePointList_gpu<int>(PtrStepSzb edges, PtrStepSzb dx, PtrStepSzb dy, unsigned int* coordList, float* thetaList);
        template int buildEdgePointList_gpu<float>(PtrStepSzb edges, PtrStepSzb dx, PtrStepSzb dy, unsigned int* coordList, float* thetaList);

        __global__ void buildRTable(const unsigned int* coordList, const float* thetaList, const int pointsCount,
                                    PtrStep<short2> r_table, int* r_sizes, int maxSize,
                                    const short2 templCenter, const float thetaScale)
        {
            const int tid = blockIdx.x * blockDim.x + threadIdx.x;

            if (tid >= pointsCount)
                return;

            const unsigned int coord = coordList[tid];
            short2 p;
            p.x = (coord & 0xFFFF);
            p.y = (coord >> 16) & 0xFFFF;

            const float theta = thetaList[tid];
            const int n = __float2int_rn(theta * thetaScale);

            const int ind = ::atomicAdd(r_sizes + n, 1);
            if (ind < maxSize)
                r_table(n, ind) = saturate_cast<short2>(p - templCenter);
        }

        void buildRTable_gpu(const unsigned int* coordList, const float* thetaList, int pointsCount,
                             PtrStepSz<short2> r_table, int* r_sizes,
                             short2 templCenter, int levels)
        {
            const dim3 block(256);
            const dim3 grid(divUp(pointsCount, block.x));

            const float thetaScale = levels / (2.0f * CV_PI_F);

            buildRTable<<<grid, block>>>(coordList, thetaList, pointsCount, r_table, r_sizes, r_table.cols, templCenter, thetaScale);
            cudaSafeCall( cudaGetLastError() );

            cudaSafeCall( cudaDeviceSynchronize() );
        }

        ////////////////////////////////////////////////////////////////////////
        // Ballard_Pos

        __global__ void Ballard_Pos_calcHist(const unsigned int* coordList, const float* thetaList, const int pointsCount,
                                             const PtrStep<short2> r_table, const int* r_sizes,
                                             PtrStepSzi hist,
                                             const float idp, const float thetaScale)
        {
            const int tid = blockIdx.x * blockDim.x + threadIdx.x;

            if (tid >= pointsCount)
                return;

            const unsigned int coord = coordList[tid];
            short2 p;
            p.x = (coord & 0xFFFF);
            p.y = (coord >> 16) & 0xFFFF;

            const float theta = thetaList[tid];
            const int n = __float2int_rn(theta * thetaScale);

            const short2* r_row = r_table.ptr(n);
            const int r_row_size = r_sizes[n];

            for (int j = 0; j < r_row_size; ++j)
            {
                short2 c = saturate_cast<short2>(p - r_row[j]);

                c.x = __float2int_rn(c.x * idp);
                c.y = __float2int_rn(c.y * idp);

                if (c.x >= 0 && c.x < hist.cols - 2 && c.y >= 0 && c.y < hist.rows - 2)
                    ::atomicAdd(hist.ptr(c.y + 1) + c.x + 1, 1);
            }
        }

        void Ballard_Pos_calcHist_gpu(const unsigned int* coordList, const float* thetaList, int pointsCount,
                                      PtrStepSz<short2> r_table, const int* r_sizes,
                                      PtrStepSzi hist,
                                      float dp, int levels)
        {
            const dim3 block(256);
            const dim3 grid(divUp(pointsCount, block.x));

            const float idp = 1.0f / dp;
            const float thetaScale = levels / (2.0f * CV_PI_F);

            Ballard_Pos_calcHist<<<grid, block>>>(coordList, thetaList, pointsCount, r_table, r_sizes, hist, idp, thetaScale);
            cudaSafeCall( cudaGetLastError() );

            cudaSafeCall( cudaDeviceSynchronize() );
        }

        __global__ void Ballard_Pos_findPosInHist(const PtrStepSzi hist, float4* out, int3* votes,
                                                  const int maxSize, const float dp, const int threshold)
        {
            const int x = blockIdx.x * blockDim.x + threadIdx.x;
            const int y = blockIdx.y * blockDim.y + threadIdx.y;

            if (x >= hist.cols - 2 || y >= hist.rows - 2)
                return;

            const int curVotes = hist(y + 1, x + 1);

            if (curVotes > threshold &&
                curVotes >  hist(y + 1, x) &&
                curVotes >= hist(y + 1, x + 2) &&
                curVotes >  hist(y, x + 1) &&
                curVotes >= hist(y + 2, x + 1))
            {
                const int ind = ::atomicAdd(&g_counter, 1);

                if (ind < maxSize)
                {
                    out[ind] = make_float4(x * dp, y * dp, 1.0f, 0.0f);
                    votes[ind] = make_int3(curVotes, 0, 0);
                }
            }
        }

        int Ballard_Pos_findPosInHist_gpu(PtrStepSzi hist, float4* out, int3* votes, int maxSize, float dp, int threshold)
        {
            void* counterPtr;
            cudaSafeCall( cudaGetSymbolAddress(&counterPtr, g_counter) );

            cudaSafeCall( cudaMemset(counterPtr, 0, sizeof(int)) );

            const dim3 block(32, 8);
            const dim3 grid(divUp(hist.cols - 2, block.x), divUp(hist.rows - 2, block.y));

            cudaSafeCall( cudaFuncSetCacheConfig(Ballard_Pos_findPosInHist, cudaFuncCachePreferL1) );

            Ballard_Pos_findPosInHist<<<grid, block>>>(hist, out, votes, maxSize, dp, threshold);
            cudaSafeCall( cudaGetLastError() );

            cudaSafeCall( cudaDeviceSynchronize() );

            int totalCount;
            cudaSafeCall( cudaMemcpy(&totalCount, counterPtr, sizeof(int), cudaMemcpyDeviceToHost) );

            totalCount = ::min(totalCount, maxSize);

            return totalCount;
        }

        ////////////////////////////////////////////////////////////////////////
        // Guil_Full

        struct FeatureTable
        {
            uchar* p1_pos_data;
            size_t p1_pos_step;

            uchar* p1_theta_data;
            size_t p1_theta_step;

            uchar* p2_pos_data;
            size_t p2_pos_step;

            uchar* d12_data;
            size_t d12_step;

            uchar* r1_data;
            size_t r1_step;

            uchar* r2_data;
            size_t r2_step;
        };

        __constant__ FeatureTable c_templFeatures;
        __constant__ FeatureTable c_imageFeatures;

        void Guil_Full_setTemplFeatures(PtrStepb p1_pos, PtrStepb p1_theta, PtrStepb p2_pos, PtrStepb d12, PtrStepb r1, PtrStepb r2)
        {
            FeatureTable tbl;

            tbl.p1_pos_data = p1_pos.data;
            tbl.p1_pos_step = p1_pos.step;

            tbl.p1_theta_data = p1_theta.data;
            tbl.p1_theta_step = p1_theta.step;

            tbl.p2_pos_data = p2_pos.data;
            tbl.p2_pos_step = p2_pos.step;

            tbl.d12_data = d12.data;
            tbl.d12_step = d12.step;

            tbl.r1_data = r1.data;
            tbl.r1_step = r1.step;

            tbl.r2_data = r2.data;
            tbl.r2_step = r2.step;

            cudaSafeCall( cudaMemcpyToSymbol(c_templFeatures, &tbl, sizeof(FeatureTable)) );
        }
        void Guil_Full_setImageFeatures(PtrStepb p1_pos, PtrStepb p1_theta, PtrStepb p2_pos, PtrStepb d12, PtrStepb r1, PtrStepb r2)
        {
            FeatureTable tbl;

            tbl.p1_pos_data = p1_pos.data;
            tbl.p1_pos_step = p1_pos.step;

            tbl.p1_theta_data = p1_theta.data;
            tbl.p1_theta_step = p1_theta.step;

            tbl.p2_pos_data = p2_pos.data;
            tbl.p2_pos_step = p2_pos.step;

            tbl.d12_data = d12.data;
            tbl.d12_step = d12.step;

            tbl.r1_data = r1.data;
            tbl.r1_step = r1.step;

            tbl.r2_data = r2.data;
            tbl.r2_step = r2.step;

            cudaSafeCall( cudaMemcpyToSymbol(c_imageFeatures, &tbl, sizeof(FeatureTable)) );
        }

        struct TemplFeatureTable
        {
            static __device__ float2* p1_pos(int n)
            {
                return (float2*)(c_templFeatures.p1_pos_data + n * c_templFeatures.p1_pos_step);
            }
            static __device__ float* p1_theta(int n)
            {
                return (float*)(c_templFeatures.p1_theta_data + n * c_templFeatures.p1_theta_step);
            }
            static __device__ float2* p2_pos(int n)
            {
                return (float2*)(c_templFeatures.p2_pos_data + n * c_templFeatures.p2_pos_step);
            }

            static __device__ float* d12(int n)
            {
                return (float*)(c_templFeatures.d12_data + n * c_templFeatures.d12_step);
            }

            static __device__ float2* r1(int n)
            {
                return (float2*)(c_templFeatures.r1_data + n * c_templFeatures.r1_step);
            }
            static __device__ float2* r2(int n)
            {
                return (float2*)(c_templFeatures.r2_data + n * c_templFeatures.r2_step);
            }
        };
        struct ImageFeatureTable
        {
            static __device__ float2* p1_pos(int n)
            {
                return (float2*)(c_imageFeatures.p1_pos_data + n * c_imageFeatures.p1_pos_step);
            }
            static __device__ float* p1_theta(int n)
            {
                return (float*)(c_imageFeatures.p1_theta_data + n * c_imageFeatures.p1_theta_step);
            }
            static __device__ float2* p2_pos(int n)
            {
                return (float2*)(c_imageFeatures.p2_pos_data + n * c_imageFeatures.p2_pos_step);
            }

            static __device__ float* d12(int n)
            {
                return (float*)(c_imageFeatures.d12_data + n * c_imageFeatures.d12_step);
            }

            static __device__ float2* r1(int n)
            {
                return (float2*)(c_imageFeatures.r1_data + n * c_imageFeatures.r1_step);
            }
            static __device__ float2* r2(int n)
            {
                return (float2*)(c_imageFeatures.r2_data + n * c_imageFeatures.r2_step);
            }
        };

        __device__ float clampAngle(float a)
        {
            float res = a;

            while (res > 2.0f * CV_PI_F)
                res -= 2.0f * CV_PI_F;
            while (res < 0.0f)
                res += 2.0f * CV_PI_F;

            return res;
        }

        __device__ bool angleEq(float a, float b, float eps)
        {
            return (::fabs(clampAngle(a - b)) <= eps);
        }

        template <class FT, bool isTempl>
        __global__ void Guil_Full_buildFeatureList(const unsigned int* coordList, const float* thetaList, const int pointsCount,
                                                   int* sizes, const int maxSize,
                                                   const float xi, const float angleEpsilon, const float alphaScale,
                                                   const float2 center, const float maxDist)
        {
            const float p1_theta = thetaList[blockIdx.x];
            const unsigned int coord1 = coordList[blockIdx.x];
            float2 p1_pos;
            p1_pos.x = (coord1 & 0xFFFF);
            p1_pos.y = (coord1 >> 16) & 0xFFFF;

            for (int i = threadIdx.x; i < pointsCount; i += blockDim.x)
            {
                const float p2_theta = thetaList[i];
                const unsigned int coord2 = coordList[i];
                float2 p2_pos;
                p2_pos.x = (coord2 & 0xFFFF);
                p2_pos.y = (coord2 >> 16) & 0xFFFF;

                if (angleEq(p1_theta - p2_theta, xi, angleEpsilon))
                {
                    const float2 d = p1_pos - p2_pos;

                    float alpha12 = clampAngle(::atan2(d.y, d.x) - p1_theta);
                    float d12 = ::sqrtf(d.x * d.x + d.y * d.y);

                    if (d12 > maxDist)
                        continue;

                    float2 r1 = p1_pos - center;
                    float2 r2 = p2_pos - center;

                    const int n = __float2int_rn(alpha12 * alphaScale);

                    const int ind = ::atomicAdd(sizes + n, 1);

                    if (ind < maxSize)
                    {
                        if (!isTempl)
                        {
                            FT::p1_pos(n)[ind] = p1_pos;
                            FT::p2_pos(n)[ind] = p2_pos;
                        }

                        FT::p1_theta(n)[ind] = p1_theta;

                        FT::d12(n)[ind] = d12;

                        if (isTempl)
                        {
                            FT::r1(n)[ind] = r1;
                            FT::r2(n)[ind] = r2;
                        }
                    }
                }
            }
        }

        template <class FT, bool isTempl>
        void Guil_Full_buildFeatureList_caller(const unsigned int* coordList, const float* thetaList, int pointsCount,
                                               int* sizes, int maxSize,
                                               float xi, float angleEpsilon, int levels,
                                               float2 center, float maxDist)
        {
            const dim3 block(256);
            const dim3 grid(pointsCount);

            const float alphaScale = levels / (2.0f * CV_PI_F);

            Guil_Full_buildFeatureList<FT, isTempl><<<grid, block>>>(coordList, thetaList, pointsCount,
                                                                     sizes, maxSize,
                                                                     xi * (CV_PI_F / 180.0f), angleEpsilon * (CV_PI_F / 180.0f), alphaScale,
                                                                     center, maxDist);
            cudaSafeCall( cudaGetLastError() );

            cudaSafeCall( cudaDeviceSynchronize() );

            thrust::device_ptr<int> sizesPtr(sizes);
            thrust::transform(sizesPtr, sizesPtr + levels + 1, sizesPtr, device::bind2nd(device::minimum<int>(), maxSize));
        }

        void Guil_Full_buildTemplFeatureList_gpu(const unsigned int* coordList, const float* thetaList, int pointsCount,
                                                 int* sizes, int maxSize,
                                                 float xi, float angleEpsilon, int levels,
                                                 float2 center, float maxDist)
        {
            Guil_Full_buildFeatureList_caller<TemplFeatureTable, true>(coordList, thetaList, pointsCount,
                                                                       sizes, maxSize,
                                                                       xi, angleEpsilon, levels,
                                                                       center, maxDist);
        }
        void Guil_Full_buildImageFeatureList_gpu(const unsigned int* coordList, const float* thetaList, int pointsCount,
                                                 int* sizes, int maxSize,
                                                 float xi, float angleEpsilon, int levels,
                                                 float2 center, float maxDist)
        {
            Guil_Full_buildFeatureList_caller<ImageFeatureTable, false>(coordList, thetaList, pointsCount,
                                                                        sizes, maxSize,
                                                                        xi, angleEpsilon, levels,
                                                                        center, maxDist);
        }

        __global__ void Guil_Full_calcOHist(const int* templSizes, const int* imageSizes, int* OHist,
                                            const float minAngle, const float maxAngle, const float iAngleStep, const int angleRange)
        {
            extern __shared__ int s_OHist[];
            for (int i = threadIdx.x; i <= angleRange; i += blockDim.x)
                s_OHist[i] = 0;
            __syncthreads();

            const int tIdx = blockIdx.x;
            const int level = blockIdx.y;

            const int tSize = templSizes[level];

            if (tIdx < tSize)
            {
                const int imSize = imageSizes[level];

                const float t_p1_theta = TemplFeatureTable::p1_theta(level)[tIdx];

                for (int i = threadIdx.x; i < imSize; i += blockDim.x)
                {
                    const float im_p1_theta = ImageFeatureTable::p1_theta(level)[i];

                    const float angle = clampAngle(im_p1_theta - t_p1_theta);

                    if (angle >= minAngle && angle <= maxAngle)
                    {
                        const int n = __float2int_rn((angle - minAngle) * iAngleStep);
                        Emulation::smem::atomicAdd(&s_OHist[n], 1);
                    }
                }
            }
            __syncthreads();

            for (int i = threadIdx.x; i <= angleRange; i += blockDim.x)
                ::atomicAdd(OHist + i, s_OHist[i]);
        }

        void Guil_Full_calcOHist_gpu(const int* templSizes, const int* imageSizes, int* OHist,
                                     float minAngle, float maxAngle, float angleStep, int angleRange,
                                     int levels, int tMaxSize)
        {
            const dim3 block(256);
            const dim3 grid(tMaxSize, levels + 1);

            minAngle *= (CV_PI_F / 180.0f);
            maxAngle *= (CV_PI_F / 180.0f);
            angleStep *= (CV_PI_F / 180.0f);

            const size_t smemSize = (angleRange + 1) * sizeof(float);

            Guil_Full_calcOHist<<<grid, block, smemSize>>>(templSizes, imageSizes, OHist,
                                                           minAngle, maxAngle, 1.0f / angleStep, angleRange);
            cudaSafeCall( cudaGetLastError() );

            cudaSafeCall( cudaDeviceSynchronize() );
        }

        __global__ void Guil_Full_calcSHist(const int* templSizes, const int* imageSizes, int* SHist,
                                            const float angle, const float angleEpsilon,
                                            const float minScale, const float maxScale, const float iScaleStep, const int scaleRange)
        {
            extern __shared__ int s_SHist[];
            for (int i = threadIdx.x; i <= scaleRange; i += blockDim.x)
                s_SHist[i] = 0;
            __syncthreads();

            const int tIdx = blockIdx.x;
            const int level = blockIdx.y;

            const int tSize = templSizes[level];

            if (tIdx < tSize)
            {
                const int imSize = imageSizes[level];

                const float t_p1_theta = TemplFeatureTable::p1_theta(level)[tIdx] + angle;
                const float t_d12 = TemplFeatureTable::d12(level)[tIdx] + angle;

                for (int i = threadIdx.x; i < imSize; i += blockDim.x)
                {
                    const float im_p1_theta = ImageFeatureTable::p1_theta(level)[i];
                    const float im_d12 = ImageFeatureTable::d12(level)[i];

                    if (angleEq(im_p1_theta, t_p1_theta, angleEpsilon))
                    {
                        const float scale = im_d12 / t_d12;

                        if (scale >= minScale && scale <= maxScale)
                        {
                            const int s = __float2int_rn((scale - minScale) * iScaleStep);
                            Emulation::smem::atomicAdd(&s_SHist[s], 1);
                        }
                    }
                }
            }
            __syncthreads();

            for (int i = threadIdx.x; i <= scaleRange; i += blockDim.x)
                ::atomicAdd(SHist + i, s_SHist[i]);
        }

        void Guil_Full_calcSHist_gpu(const int* templSizes, const int* imageSizes, int* SHist,
                                     float angle, float angleEpsilon,
                                     float minScale, float maxScale, float iScaleStep, int scaleRange,
                                     int levels, int tMaxSize)
        {
            const dim3 block(256);
            const dim3 grid(tMaxSize, levels + 1);

            angle *= (CV_PI_F / 180.0f);
            angleEpsilon *= (CV_PI_F / 180.0f);

            const size_t smemSize = (scaleRange + 1) * sizeof(float);

            Guil_Full_calcSHist<<<grid, block, smemSize>>>(templSizes, imageSizes, SHist,
                                                           angle, angleEpsilon,
                                                           minScale, maxScale, iScaleStep, scaleRange);
            cudaSafeCall( cudaGetLastError() );

            cudaSafeCall( cudaDeviceSynchronize() );
        }

        __global__ void Guil_Full_calcPHist(const int* templSizes, const int* imageSizes, PtrStepSzi PHist,
                                            const float angle, const float sinVal, const float cosVal, const float angleEpsilon, const float scale,
                                            const float idp)
        {
            const int tIdx = blockIdx.x;
            const int level = blockIdx.y;

            const int tSize = templSizes[level];

            if (tIdx < tSize)
            {
                const int imSize = imageSizes[level];

                const float t_p1_theta = TemplFeatureTable::p1_theta(level)[tIdx] + angle;

                float2 r1 = TemplFeatureTable::r1(level)[tIdx];
                float2 r2 = TemplFeatureTable::r2(level)[tIdx];

                r1 = r1 * scale;
                r2 = r2 * scale;

                r1 = make_float2(cosVal * r1.x - sinVal * r1.y, sinVal * r1.x + cosVal * r1.y);
                r2 = make_float2(cosVal * r2.x - sinVal * r2.y, sinVal * r2.x + cosVal * r2.y);

                for (int i = threadIdx.x; i < imSize; i += blockDim.x)
                {
                    const float im_p1_theta = ImageFeatureTable::p1_theta(level)[i];

                    const float2 im_p1_pos = ImageFeatureTable::p1_pos(level)[i];
                    const float2 im_p2_pos = ImageFeatureTable::p2_pos(level)[i];

                    if (angleEq(im_p1_theta, t_p1_theta, angleEpsilon))
                    {
                        float2 c1, c2;

                        c1 = im_p1_pos - r1;
                        c1 = c1 * idp;

                        c2 = im_p2_pos - r2;
                        c2 = c2 * idp;

                        if (::fabs(c1.x - c2.x) > 1 || ::fabs(c1.y - c2.y) > 1)
                            continue;

                        if (c1.y >= 0 && c1.y < PHist.rows - 2 && c1.x >= 0 && c1.x < PHist.cols - 2)
                            ::atomicAdd(PHist.ptr(__float2int_rn(c1.y) + 1) + __float2int_rn(c1.x) + 1, 1);
                    }
                }
            }
        }

        void Guil_Full_calcPHist_gpu(const int* templSizes, const int* imageSizes, PtrStepSzi PHist,
                                     float angle, float angleEpsilon, float scale,
                                     float dp,
                                     int levels, int tMaxSize)
        {
            const dim3 block(256);
            const dim3 grid(tMaxSize, levels + 1);

            angle *= (CV_PI_F / 180.0f);
            angleEpsilon *= (CV_PI_F / 180.0f);

            const float sinVal = ::sinf(angle);
            const float cosVal = ::cosf(angle);

            cudaSafeCall( cudaFuncSetCacheConfig(Guil_Full_calcPHist, cudaFuncCachePreferL1) );

            Guil_Full_calcPHist<<<grid, block>>>(templSizes, imageSizes, PHist,
                                                 angle, sinVal, cosVal, angleEpsilon, scale,
                                                 1.0f / dp);
            cudaSafeCall( cudaGetLastError() );

            cudaSafeCall( cudaDeviceSynchronize() );
        }

        __global__ void Guil_Full_findPosInHist(const PtrStepSzi hist, float4* out, int3* votes, const int maxSize,
                                                const float angle, const int angleVotes, const float scale, const int scaleVotes,
                                                const float dp, const int threshold)
        {
            const int x = blockIdx.x * blockDim.x + threadIdx.x;
            const int y = blockIdx.y * blockDim.y + threadIdx.y;

            if (x >= hist.cols - 2 || y >= hist.rows - 2)
                return;

            const int curVotes = hist(y + 1, x + 1);

            if (curVotes > threshold &&
                curVotes >  hist(y + 1, x) &&
                curVotes >= hist(y + 1, x + 2) &&
                curVotes >  hist(y, x + 1) &&
                curVotes >= hist(y + 2, x + 1))
            {
                const int ind = ::atomicAdd(&g_counter, 1);

                if (ind < maxSize)
                {
                    out[ind] = make_float4(x * dp, y * dp, scale, angle);
                    votes[ind] = make_int3(curVotes, scaleVotes, angleVotes);
                }
            }
        }

        int Guil_Full_findPosInHist_gpu(PtrStepSzi hist, float4* out, int3* votes, int curSize, int maxSize,
                                        float angle, int angleVotes, float scale, int scaleVotes,
                                        float dp, int threshold)
        {
            void* counterPtr;
            cudaSafeCall( cudaGetSymbolAddress(&counterPtr, g_counter) );

            cudaSafeCall( cudaMemcpy(counterPtr, &curSize, sizeof(int), cudaMemcpyHostToDevice) );

            const dim3 block(32, 8);
            const dim3 grid(divUp(hist.cols - 2, block.x), divUp(hist.rows - 2, block.y));

            cudaSafeCall( cudaFuncSetCacheConfig(Guil_Full_findPosInHist, cudaFuncCachePreferL1) );

            Guil_Full_findPosInHist<<<grid, block>>>(hist, out, votes, maxSize,
                                                     angle, angleVotes, scale, scaleVotes,
                                                     dp, threshold);
            cudaSafeCall( cudaGetLastError() );

            cudaSafeCall( cudaDeviceSynchronize() );

            int totalCount;
            cudaSafeCall( cudaMemcpy(&totalCount, counterPtr, sizeof(int), cudaMemcpyDeviceToHost) );

            totalCount = ::min(totalCount, maxSize);

            return totalCount;
        }
    }
}}}

#endif // HAVE_OPENCV_CUDAARITHM

#endif /* CUDA_DISABLER */