test_mltests.cpp 4.74 KB
Newer Older
wester committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                        Intel License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of Intel Corporation may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#include "test_precomp.hpp"

using namespace cv;
using namespace std;

CV_AMLTest::CV_AMLTest( const char* _modelName ) : CV_MLBaseTest( _modelName )
{
    validationFN = "avalidation.xml";
}

int CV_AMLTest::run_test_case( int testCaseIdx )
{
    int code = cvtest::TS::OK;
    code = prepare_test_case( testCaseIdx );

    if (code == cvtest::TS::OK)
    {
        //#define GET_STAT
#ifdef GET_STAT
        const char* data_name = ((CvFileNode*)cvGetSeqElem( dataSetNames, testCaseIdx ))->data.str.ptr;
        printf("%s, %s      ", name, data_name);
        const int icount = 100;
        float res[icount];
        for (int k = 0; k < icount; k++)
        {
#endif
wester committed
68
            data.mix_train_and_test_idx();
wester committed
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
            code = train( testCaseIdx );
#ifdef GET_STAT
            float case_result = get_error();

            res[k] = case_result;
        }
        float mean = 0, sigma = 0;
        for (int k = 0; k < icount; k++)
        {
            mean += res[k];
        }
        mean = mean /icount;
        for (int k = 0; k < icount; k++)
        {
            sigma += (res[k] - mean)*(res[k] - mean);
        }
        sigma = sqrt(sigma/icount);
        printf("%f, %f\n", mean, sigma);
#endif
    }
    return code;
}

int CV_AMLTest::validate_test_results( int testCaseIdx )
{
    int iters;
    float mean, sigma;
    // read validation params
    FileNode resultNode =
        validationFS.getFirstTopLevelNode()["validation"][modelName][dataSetNames[testCaseIdx]]["result"];
    resultNode["iter_count"] >> iters;
    if ( iters > 0)
    {
        resultNode["mean"] >> mean;
        resultNode["sigma"] >> sigma;
wester committed
104
        float curErr = get_error( testCaseIdx, CV_TEST_ERROR );
wester committed
105
        const int coeff = 4;
wester committed
106
        ts->printf( cvtest::TS::LOG, "Test case = %d; test error = %f; mean error = %f (diff=%f), %d*sigma = %f",
wester committed
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
                                testCaseIdx, curErr, mean, abs( curErr - mean), coeff, coeff*sigma );
        if ( abs( curErr - mean) > coeff*sigma )
        {
            ts->printf( cvtest::TS::LOG, "abs(%f - %f) > %f - OUT OF RANGE!\n", curErr, mean, coeff*sigma, coeff );
            return cvtest::TS::FAIL_BAD_ACCURACY;
        }
        else
            ts->printf( cvtest::TS::LOG, ".\n" );

    }
    else
    {
        ts->printf( cvtest::TS::LOG, "validation info is not suitable" );
        return cvtest::TS::FAIL_INVALID_TEST_DATA;
    }
    return cvtest::TS::OK;
}

TEST(ML_DTree, regression) { CV_AMLTest test( CV_DTREE ); test.safe_run(); }
TEST(ML_Boost, regression) { CV_AMLTest test( CV_BOOST ); test.safe_run(); }
TEST(ML_RTrees, regression) { CV_AMLTest test( CV_RTREES ); test.safe_run(); }
wester committed
128
TEST(ML_ERTrees, regression) { CV_AMLTest test( CV_ERTREES ); test.safe_run(); }
wester committed
129 130

/* End of file. */