fast.cpp 15.2 KB
Newer Older
wester committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
/* This is FAST corner detector, contributed to OpenCV by the author, Edward Rosten.
   Below is the original copyright and the references */

/*
Copyright (c) 2006, 2008 Edward Rosten
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

    *Redistributions of source code must retain the above copyright
     notice, this list of conditions and the following disclaimer.

    *Redistributions in binary form must reproduce the above copyright
     notice, this list of conditions and the following disclaimer in the
     documentation and/or other materials provided with the distribution.

    *Neither the name of the University of Cambridge nor the names of
     its contributors may be used to endorse or promote products derived
     from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/

/*
The references are:
 * Machine learning for high-speed corner detection,
   E. Rosten and T. Drummond, ECCV 2006
 * Faster and better: A machine learning approach to corner detection
   E. Rosten, R. Porter and T. Drummond, PAMI, 2009
*/

#include "precomp.hpp"
#include "fast_score.hpp"
#include "opencl_kernels_features2d.hpp"

#if defined _MSC_VER
# pragma warning( disable : 4127)
#endif

namespace cv
{

template<int patternSize>
void FAST_t(InputArray _img, std::vector<KeyPoint>& keypoints, int threshold, bool nonmax_suppression)
{
    Mat img = _img.getMat();
    const int K = patternSize/2, N = patternSize + K + 1;
#if CV_SSE2
    const int quarterPatternSize = patternSize/4;
    (void)quarterPatternSize;
#endif
    int i, j, k, pixel[25];
    makeOffsets(pixel, (int)img.step, patternSize);

    keypoints.clear();

    threshold = std::min(std::max(threshold, 0), 255);

#if CV_SSE2
    __m128i delta = _mm_set1_epi8(-128), t = _mm_set1_epi8((char)threshold), K16 = _mm_set1_epi8((char)K);
    (void)K16;
    (void)delta;
    (void)t;
#endif
    uchar threshold_tab[512];
    for( i = -255; i <= 255; i++ )
        threshold_tab[i+255] = (uchar)(i < -threshold ? 1 : i > threshold ? 2 : 0);

    AutoBuffer<uchar> _buf((img.cols+16)*3*(sizeof(int) + sizeof(uchar)) + 128);
    uchar* buf[3];
    buf[0] = _buf; buf[1] = buf[0] + img.cols; buf[2] = buf[1] + img.cols;
    int* cpbuf[3];
    cpbuf[0] = (int*)alignPtr(buf[2] + img.cols, sizeof(int)) + 1;
    cpbuf[1] = cpbuf[0] + img.cols + 1;
    cpbuf[2] = cpbuf[1] + img.cols + 1;
    memset(buf[0], 0, img.cols*3);

    for(i = 3; i < img.rows-2; i++)
    {
        const uchar* ptr = img.ptr<uchar>(i) + 3;
        uchar* curr = buf[(i - 3)%3];
        int* cornerpos = cpbuf[(i - 3)%3];
        memset(curr, 0, img.cols);
        int ncorners = 0;

        if( i < img.rows - 3 )
        {
            j = 3;
    #if CV_SSE2
            if( patternSize == 16 )
            {
                for(; j < img.cols - 16 - 3; j += 16, ptr += 16)
                {
                    __m128i m0, m1;
                    __m128i v0 = _mm_loadu_si128((const __m128i*)ptr);
                    __m128i v1 = _mm_xor_si128(_mm_subs_epu8(v0, t), delta);
                    v0 = _mm_xor_si128(_mm_adds_epu8(v0, t), delta);

                    __m128i x0 = _mm_sub_epi8(_mm_loadu_si128((const __m128i*)(ptr + pixel[0])), delta);
                    __m128i x1 = _mm_sub_epi8(_mm_loadu_si128((const __m128i*)(ptr + pixel[quarterPatternSize])), delta);
                    __m128i x2 = _mm_sub_epi8(_mm_loadu_si128((const __m128i*)(ptr + pixel[2*quarterPatternSize])), delta);
                    __m128i x3 = _mm_sub_epi8(_mm_loadu_si128((const __m128i*)(ptr + pixel[3*quarterPatternSize])), delta);
                    m0 = _mm_and_si128(_mm_cmpgt_epi8(x0, v0), _mm_cmpgt_epi8(x1, v0));
                    m1 = _mm_and_si128(_mm_cmpgt_epi8(v1, x0), _mm_cmpgt_epi8(v1, x1));
                    m0 = _mm_or_si128(m0, _mm_and_si128(_mm_cmpgt_epi8(x1, v0), _mm_cmpgt_epi8(x2, v0)));
                    m1 = _mm_or_si128(m1, _mm_and_si128(_mm_cmpgt_epi8(v1, x1), _mm_cmpgt_epi8(v1, x2)));
                    m0 = _mm_or_si128(m0, _mm_and_si128(_mm_cmpgt_epi8(x2, v0), _mm_cmpgt_epi8(x3, v0)));
                    m1 = _mm_or_si128(m1, _mm_and_si128(_mm_cmpgt_epi8(v1, x2), _mm_cmpgt_epi8(v1, x3)));
                    m0 = _mm_or_si128(m0, _mm_and_si128(_mm_cmpgt_epi8(x3, v0), _mm_cmpgt_epi8(x0, v0)));
                    m1 = _mm_or_si128(m1, _mm_and_si128(_mm_cmpgt_epi8(v1, x3), _mm_cmpgt_epi8(v1, x0)));
                    m0 = _mm_or_si128(m0, m1);
                    int mask = _mm_movemask_epi8(m0);
                    if( mask == 0 )
                        continue;
                    if( (mask & 255) == 0 )
                    {
                        j -= 8;
                        ptr -= 8;
                        continue;
                    }

                    __m128i c0 = _mm_setzero_si128(), c1 = c0, max0 = c0, max1 = c0;
                    for( k = 0; k < N; k++ )
                    {
                        __m128i x = _mm_xor_si128(_mm_loadu_si128((const __m128i*)(ptr + pixel[k])), delta);
                        m0 = _mm_cmpgt_epi8(x, v0);
                        m1 = _mm_cmpgt_epi8(v1, x);

                        c0 = _mm_and_si128(_mm_sub_epi8(c0, m0), m0);
                        c1 = _mm_and_si128(_mm_sub_epi8(c1, m1), m1);

                        max0 = _mm_max_epu8(max0, c0);
                        max1 = _mm_max_epu8(max1, c1);
                    }

                    max0 = _mm_max_epu8(max0, max1);
                    int m = _mm_movemask_epi8(_mm_cmpgt_epi8(max0, K16));

                    for( k = 0; m > 0 && k < 16; k++, m >>= 1 )
                        if(m & 1)
                        {
                            cornerpos[ncorners++] = j+k;
                            if(nonmax_suppression)
                                curr[j+k] = (uchar)cornerScore<patternSize>(ptr+k, pixel, threshold);
                        }
                }
            }
    #endif
            for( ; j < img.cols - 3; j++, ptr++ )
            {
                int v = ptr[0];
                const uchar* tab = &threshold_tab[0] - v + 255;
                int d = tab[ptr[pixel[0]]] | tab[ptr[pixel[8]]];

                if( d == 0 )
                    continue;

                d &= tab[ptr[pixel[2]]] | tab[ptr[pixel[10]]];
                d &= tab[ptr[pixel[4]]] | tab[ptr[pixel[12]]];
                d &= tab[ptr[pixel[6]]] | tab[ptr[pixel[14]]];

                if( d == 0 )
                    continue;

                d &= tab[ptr[pixel[1]]] | tab[ptr[pixel[9]]];
                d &= tab[ptr[pixel[3]]] | tab[ptr[pixel[11]]];
                d &= tab[ptr[pixel[5]]] | tab[ptr[pixel[13]]];
                d &= tab[ptr[pixel[7]]] | tab[ptr[pixel[15]]];

                if( d & 1 )
                {
                    int vt = v - threshold, count = 0;

                    for( k = 0; k < N; k++ )
                    {
                        int x = ptr[pixel[k]];
                        if(x < vt)
                        {
                            if( ++count > K )
                            {
                                cornerpos[ncorners++] = j;
                                if(nonmax_suppression)
                                    curr[j] = (uchar)cornerScore<patternSize>(ptr, pixel, threshold);
                                break;
                            }
                        }
                        else
                            count = 0;
                    }
                }

                if( d & 2 )
                {
                    int vt = v + threshold, count = 0;

                    for( k = 0; k < N; k++ )
                    {
                        int x = ptr[pixel[k]];
                        if(x > vt)
                        {
                            if( ++count > K )
                            {
                                cornerpos[ncorners++] = j;
                                if(nonmax_suppression)
                                    curr[j] = (uchar)cornerScore<patternSize>(ptr, pixel, threshold);
                                break;
                            }
                        }
                        else
                            count = 0;
                    }
                }
            }
        }

        cornerpos[-1] = ncorners;

        if( i == 3 )
            continue;

        const uchar* prev = buf[(i - 4 + 3)%3];
        const uchar* pprev = buf[(i - 5 + 3)%3];
        cornerpos = cpbuf[(i - 4 + 3)%3];
        ncorners = cornerpos[-1];

        for( k = 0; k < ncorners; k++ )
        {
            j = cornerpos[k];
            int score = prev[j];
            if( !nonmax_suppression ||
               (score > prev[j+1] && score > prev[j-1] &&
                score > pprev[j-1] && score > pprev[j] && score > pprev[j+1] &&
                score > curr[j-1] && score > curr[j] && score > curr[j+1]) )
            {
                keypoints.push_back(KeyPoint((float)j, (float)(i-1), 7.f, -1, (float)score));
            }
        }
    }
}

#ifdef HAVE_OPENCL
template<typename pt>
struct cmp_pt
{
    bool operator ()(const pt& a, const pt& b) const { return a.y < b.y || (a.y == b.y && a.x < b.x); }
};

static bool ocl_FAST( InputArray _img, std::vector<KeyPoint>& keypoints,
                     int threshold, bool nonmax_suppression, int maxKeypoints )
{
    UMat img = _img.getUMat();
    if( img.cols < 7 || img.rows < 7 )
        return false;
    size_t globalsize[] = { (size_t)img.cols-6, (size_t)img.rows-6 };

    ocl::Kernel fastKptKernel("FAST_findKeypoints", ocl::features2d::fast_oclsrc);
    if (fastKptKernel.empty())
        return false;

    UMat kp1(1, maxKeypoints*2+1, CV_32S);

    UMat ucounter1(kp1, Rect(0,0,1,1));
    ucounter1.setTo(Scalar::all(0));

    if( !fastKptKernel.args(ocl::KernelArg::ReadOnly(img),
                            ocl::KernelArg::PtrReadWrite(kp1),
                            maxKeypoints, threshold).run(2, globalsize, 0, true))
        return false;

    Mat mcounter;
    ucounter1.copyTo(mcounter);
    int i, counter = mcounter.at<int>(0);
    counter = std::min(counter, maxKeypoints);

    keypoints.clear();

    if( counter == 0 )
        return true;

    if( !nonmax_suppression )
    {
        Mat m;
        kp1(Rect(0, 0, counter*2+1, 1)).copyTo(m);
        const Point* pt = (const Point*)(m.ptr<int>() + 1);
        for( i = 0; i < counter; i++ )
            keypoints.push_back(KeyPoint((float)pt[i].x, (float)pt[i].y, 7.f, -1, 1.f));
    }
    else
    {
        UMat kp2(1, maxKeypoints*3+1, CV_32S);
        UMat ucounter2 = kp2(Rect(0,0,1,1));
        ucounter2.setTo(Scalar::all(0));

        ocl::Kernel fastNMSKernel("FAST_nonmaxSupression", ocl::features2d::fast_oclsrc);
        if (fastNMSKernel.empty())
            return false;

        size_t globalsize_nms[] = { (size_t)counter };
        if( !fastNMSKernel.args(ocl::KernelArg::PtrReadOnly(kp1),
                                ocl::KernelArg::PtrReadWrite(kp2),
                                ocl::KernelArg::ReadOnly(img),
                                counter, counter).run(1, globalsize_nms, 0, true))
            return false;

        Mat m2;
        kp2(Rect(0, 0, counter*3+1, 1)).copyTo(m2);
        Point3i* pt2 = (Point3i*)(m2.ptr<int>() + 1);
        int newcounter = std::min(m2.at<int>(0), counter);

        std::sort(pt2, pt2 + newcounter, cmp_pt<Point3i>());

        for( i = 0; i < newcounter; i++ )
            keypoints.push_back(KeyPoint((float)pt2[i].x, (float)pt2[i].y, 7.f, -1, (float)pt2[i].z));
    }

    return true;
}
#endif

void FAST(InputArray _img, std::vector<KeyPoint>& keypoints, int threshold, bool nonmax_suppression, int type)
{
#ifdef HAVE_OPENCL
  if( ocl::useOpenCL() && _img.isUMat() && type == FastFeatureDetector::TYPE_9_16 &&
      ocl_FAST(_img, keypoints, threshold, nonmax_suppression, 10000))
  {
    CV_IMPL_ADD(CV_IMPL_OCL);
    return;
  }
#endif

  switch(type) {
    case FastFeatureDetector::TYPE_5_8:
      FAST_t<8>(_img, keypoints, threshold, nonmax_suppression);
      break;
    case FastFeatureDetector::TYPE_7_12:
      FAST_t<12>(_img, keypoints, threshold, nonmax_suppression);
      break;
    case FastFeatureDetector::TYPE_9_16:
#ifdef HAVE_TEGRA_OPTIMIZATION
      if(tegra::useTegra() && tegra::FAST(_img, keypoints, threshold, nonmax_suppression))
        break;
#endif
      FAST_t<16>(_img, keypoints, threshold, nonmax_suppression);
      break;
  }
}


void FAST(InputArray _img, std::vector<KeyPoint>& keypoints, int threshold, bool nonmax_suppression)
{
    FAST(_img, keypoints, threshold, nonmax_suppression, FastFeatureDetector::TYPE_9_16);
}


class FastFeatureDetector_Impl : public FastFeatureDetector
{
public:
    FastFeatureDetector_Impl( int _threshold, bool _nonmaxSuppression, int _type )
    : threshold(_threshold), nonmaxSuppression(_nonmaxSuppression), type((short)_type)
    {}

    void detect( InputArray _image, std::vector<KeyPoint>& keypoints, InputArray _mask )
    {
        Mat mask = _mask.getMat(), grayImage;
        UMat ugrayImage;
        _InputArray gray = _image;
        if( _image.type() != CV_8U )
        {
            _OutputArray ogray = _image.isUMat() ? _OutputArray(ugrayImage) : _OutputArray(grayImage);
            cvtColor( _image, ogray, COLOR_BGR2GRAY );
            gray = ogray;
        }
        FAST( gray, keypoints, threshold, nonmaxSuppression, type );
        KeyPointsFilter::runByPixelsMask( keypoints, mask );
    }

    void set(int prop, double value)
    {
        if(prop == THRESHOLD)
            threshold = cvRound(value);
        else if(prop == NONMAX_SUPPRESSION)
            nonmaxSuppression = value != 0;
        else if(prop == FAST_N)
            type = cvRound(value);
        else
            CV_Error(Error::StsBadArg, "");
    }

    double get(int prop) const
    {
        if(prop == THRESHOLD)
            return threshold;
        if(prop == NONMAX_SUPPRESSION)
            return nonmaxSuppression;
        if(prop == FAST_N)
            return type;
        CV_Error(Error::StsBadArg, "");
        return 0;
    }

    void setThreshold(int threshold_) { threshold = threshold_; }
    int getThreshold() const { return threshold; }

    void setNonmaxSuppression(bool f) { nonmaxSuppression = f; }
    bool getNonmaxSuppression() const { return nonmaxSuppression; }

    void setType(int type_) { type = type_; }
    int getType() const { return type; }

    int threshold;
    bool nonmaxSuppression;
    int type;
};

Ptr<FastFeatureDetector> FastFeatureDetector::create( int threshold, bool nonmaxSuppression, int type )
{
    return makePtr<FastFeatureDetector_Impl>(threshold, nonmaxSuppression, type);
}


}