opencv_visualisation.cpp 18.7 KB
Newer Older
wester committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
////////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                          License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
////////////////////////////////////////////////////////////////////////////////////////

/*****************************************************************************************************

Software for visualising cascade classifier models trained by OpenCV and to get a better
understanding of the used features.

USAGE:
./opencv_visualisation --model=<model.xml> --image=<ref.png> --data=<video output folder>

Created by: Puttemans Steven - April 2016
*****************************************************************************************************/

#include <opencv2/core.hpp>
#include <opencv2/highgui.hpp>
#include <opencv2/imgproc.hpp>
#include <opencv2/imgcodecs.hpp>
#include <opencv2/videoio.hpp>

#include <fstream>
#include <iostream>

using namespace std;
using namespace cv;

struct rect_data{
    int x;
    int y;
    int w;
    int h;
    float weight;
};

static void printLimits(){
    cerr << "Limits of the current interface:" << endl;
    cerr << " - Only handles cascade classifier models, trained with the opencv_traincascade tool, containing stumps as decision trees [default settings]." << endl;
    cerr << " - The image provided needs to be a sample window with the original model dimensions, passed to the --image parameter." << endl;
    cerr << " - ONLY handles HAAR and LBP features." << endl;
}

int main( int argc, const char** argv )
{
    CommandLineParser parser(argc, argv,
        "{ help h usage ? |      | show this message }"
        "{ image i        |      | (required) path to reference image }"
        "{ model m        |      | (required) path to cascade xml file }"
        "{ data d         |      | (optional) path to video output folder }"
    );
    // Read in the input arguments
    if (parser.has("help")){
        parser.printMessage();
        printLimits();
        return 0;
    }
    string model(parser.get<string>("model"));
    string output_folder(parser.get<string>("data"));
    string image_ref = (parser.get<string>("image"));
    if (model.empty() || image_ref.empty()){
        parser.printMessage();
        printLimits();
        return -1;
    }

    // Value for timing
    // You can increase this to have a better visualisation during the generation
    int timing = 1;

    // Value for cols of storing elements
    int cols_prefered = 5;

    // Open the XML model
    FileStorage fs;
    bool model_ok = fs.open(model, FileStorage::READ);
    if (!model_ok){
        cerr << "the cascade file '" << model << "' could not be loaded." << endl;
        return  -1;
    }
    // Get a the required information
    // First decide which feature type we are using
    FileNode cascade = fs["cascade"];
    string feature_type = cascade["featureType"];
    bool haar = false, lbp = false;
    if (feature_type.compare("HAAR") == 0){
        haar = true;
    }
    if (feature_type.compare("LBP") == 0){
        lbp = true;
    }
    if ( feature_type.compare("HAAR") != 0 && feature_type.compare("LBP")){
        cerr << "The model is not an HAAR or LBP feature based model!" << endl;
        cerr << "Please select a model that can be visualized by the software." << endl;
        return -1;
    }

    // We make a visualisation mask - which increases the window to make it at least a bit more visible
    int resize_factor = 10;
    int resize_storage_factor = 10;
    Mat reference_image = imread(image_ref, IMREAD_GRAYSCALE );
    if (reference_image.empty()){
        cerr << "the reference image '" << image_ref << "'' could not be loaded." << endl;
        return -1;
    }
    Mat visualization;
    resize(reference_image, visualization, Size(reference_image.cols * resize_factor, reference_image.rows * resize_factor));

    // First recover for each stage the number of weak features and their index
    // Important since it is NOT sequential when using LBP features
    vector< vector<int> > stage_features;
    FileNode stages = cascade["stages"];
    FileNodeIterator it_stages = stages.begin(), it_stages_end = stages.end();
    int idx = 0;
    for( ; it_stages != it_stages_end; it_stages++, idx++ ){
        vector<int> current_feature_indexes;
        FileNode weak_classifiers = (*it_stages)["weakClassifiers"];
        FileNodeIterator it_weak = weak_classifiers.begin(), it_weak_end = weak_classifiers.end();
        vector<int> values;
        for(int idy = 0; it_weak != it_weak_end; it_weak++, idy++ ){
            (*it_weak)["internalNodes"] >> values;
            current_feature_indexes.push_back( (int)values[2] );
        }
        stage_features.push_back(current_feature_indexes);
    }

    // If the output option has been chosen than we will store a combined image plane for
    // each stage, containing all weak classifiers for that stage.
    bool draw_planes = false;
    stringstream output_video;
    output_video << output_folder << "model_visualization.avi";
    VideoWriter result_video;
    if( output_folder.compare("") != 0 ){
        draw_planes = true;
        result_video.open(output_video.str(), VideoWriter::fourcc('X','V','I','D'), 15, Size(reference_image.cols * resize_factor, reference_image.rows * resize_factor), false);
    }

    if(haar){
        // Grab the corresponding features dimensions and weights
        FileNode features = cascade["features"];
        vector< vector< rect_data > > feature_data;
        FileNodeIterator it_features = features.begin(), it_features_end = features.end();
        for(int idf = 0; it_features != it_features_end; it_features++, idf++ ){
            vector< rect_data > current_feature_rectangles;
            FileNode rectangles = (*it_features)["rects"];
            int nrects = (int)rectangles.size();
            for(int k = 0; k < nrects; k++){
                rect_data current_data;
                FileNode single_rect = rectangles[k];
                current_data.x = (int)single_rect[0];
                current_data.y = (int)single_rect[1];
                current_data.w = (int)single_rect[2];
                current_data.h = (int)single_rect[3];
                current_data.weight = (float)single_rect[4];
                current_feature_rectangles.push_back(current_data);
            }
            feature_data.push_back(current_feature_rectangles);
        }

        // Loop over each possible feature on its index, visualise on the mask and wait a bit,
        // then continue to the next feature.
        // If visualisations should be stored then do the in between calculations
        Mat image_plane;
        Mat metadata = Mat::zeros(150, 1000, CV_8UC1);
        vector< rect_data > current_rects;
        for(int sid = 0; sid < (int)stage_features.size(); sid ++){
            if(draw_planes){
                int features_nmbr = (int)stage_features[sid].size();
                int cols = cols_prefered;
                int rows = features_nmbr / cols;
                if( (features_nmbr % cols) > 0){
                    rows++;
                }
                image_plane = Mat::zeros(reference_image.rows * resize_storage_factor * rows, reference_image.cols * resize_storage_factor * cols, CV_8UC1);
            }
            for(int fid = 0; fid < (int)stage_features[sid].size(); fid++){
                stringstream meta1, meta2;
                meta1 << "Stage " << sid << " / Feature " << fid;
                meta2 << "Rectangles: ";
                Mat temp_window = visualization.clone();
                Mat temp_metadata = metadata.clone();
                int current_feature_index = stage_features[sid][fid];
                current_rects = feature_data[current_feature_index];
                Mat single_feature = reference_image.clone();
                resize(single_feature, single_feature, Size(), resize_storage_factor, resize_storage_factor);
                for(int i = 0; i < (int)current_rects.size(); i++){
                    rect_data local = current_rects[i];
                    if(draw_planes){
                        if(local.weight >= 0){
                            rectangle(single_feature, Rect(local.x * resize_storage_factor, local.y * resize_storage_factor, local.w * resize_storage_factor, local.h * resize_storage_factor), Scalar(0), FILLED);
                        }else{
                            rectangle(single_feature, Rect(local.x * resize_storage_factor, local.y * resize_storage_factor, local.w * resize_storage_factor, local.h * resize_storage_factor), Scalar(255), FILLED);
                        }
                    }
                    Rect part(local.x * resize_factor, local.y * resize_factor, local.w * resize_factor, local.h * resize_factor);
                    meta2 << part << " (w " << local.weight << ") ";
                    if(local.weight >= 0){
                        rectangle(temp_window, part, Scalar(0), FILLED);
                    }else{
                        rectangle(temp_window, part, Scalar(255), FILLED);
                    }
                }
                imshow("features", temp_window);
                putText(temp_window, meta1.str(), Point(15,15), FONT_HERSHEY_SIMPLEX, 0.5, Scalar(255));
                result_video.write(temp_window);
                // Copy the feature image if needed
                if(draw_planes){
                    single_feature.copyTo(image_plane(Rect(0 + (fid%cols_prefered)*single_feature.cols, 0 + (fid/cols_prefered) * single_feature.rows, single_feature.cols, single_feature.rows)));
                }
                putText(temp_metadata, meta1.str(), Point(15,15), FONT_HERSHEY_SIMPLEX, 0.5, Scalar(255));
                putText(temp_metadata, meta2.str(), Point(15,40), FONT_HERSHEY_SIMPLEX, 0.5, Scalar(255));
                imshow("metadata", temp_metadata);
                waitKey(timing);
            }
            //Store the stage image if needed
            if(draw_planes){
                stringstream save_location;
                save_location << output_folder << "stage_" << sid << ".png";
                imwrite(save_location.str(), image_plane);
            }
        }
    }

    if(lbp){
        // Grab the corresponding features dimensions and weights
        FileNode features = cascade["features"];
        vector<Rect> feature_data;
        FileNodeIterator it_features = features.begin(), it_features_end = features.end();
        for(int idf = 0; it_features != it_features_end; it_features++, idf++ ){
            FileNode rectangle = (*it_features)["rect"];
            Rect current_feature ((int)rectangle[0], (int)rectangle[1], (int)rectangle[2], (int)rectangle[3]);
            feature_data.push_back(current_feature);
        }

        // Loop over each possible feature on its index, visualise on the mask and wait a bit,
        // then continue to the next feature.
        Mat image_plane;
        Mat metadata = Mat::zeros(150, 1000, CV_8UC1);
        for(int sid = 0; sid < (int)stage_features.size(); sid ++){
            if(draw_planes){
                int features_nmbr = (int)stage_features[sid].size();
                int cols = cols_prefered;
                int rows = features_nmbr / cols;
                if( (features_nmbr % cols) > 0){
                    rows++;
                }
                image_plane = Mat::zeros(reference_image.rows * resize_storage_factor * rows, reference_image.cols * resize_storage_factor * cols, CV_8UC1);
            }
            for(int fid = 0; fid < (int)stage_features[sid].size(); fid++){
                stringstream meta1, meta2;
                meta1 << "Stage " << sid << " / Feature " << fid;
                meta2 << "Rectangle: ";
                Mat temp_window = visualization.clone();
                Mat temp_metadata = metadata.clone();
                int current_feature_index = stage_features[sid][fid];
                Rect current_rect = feature_data[current_feature_index];
                Mat single_feature = reference_image.clone();
                resize(single_feature, single_feature, Size(), resize_storage_factor, resize_storage_factor);

                // VISUALISATION
                // The rectangle is the top left one of a 3x3 block LBP constructor
                Rect resized(current_rect.x * resize_factor, current_rect.y * resize_factor, current_rect.width * resize_factor, current_rect.height * resize_factor);
                meta2 << resized;
                // Top left
                rectangle(temp_window, resized, Scalar(255), 1);
                // Top middle
                rectangle(temp_window, Rect(resized.x + resized.width, resized.y, resized.width, resized.height), Scalar(255), 1);
                // Top right
                rectangle(temp_window, Rect(resized.x + 2*resized.width, resized.y, resized.width, resized.height), Scalar(255), 1);
                // Middle left
                rectangle(temp_window, Rect(resized.x, resized.y + resized.height, resized.width, resized.height), Scalar(255), 1);
                // Middle middle
                rectangle(temp_window, Rect(resized.x + resized.width, resized.y + resized.height, resized.width, resized.height), Scalar(255), FILLED);
                // Middle right
                rectangle(temp_window, Rect(resized.x + 2*resized.width, resized.y + resized.height, resized.width, resized.height), Scalar(255), 1);
                // Bottom left
                rectangle(temp_window, Rect(resized.x, resized.y + 2*resized.height, resized.width, resized.height), Scalar(255), 1);
                // Bottom middle
                rectangle(temp_window, Rect(resized.x + resized.width, resized.y + 2*resized.height, resized.width, resized.height), Scalar(255), 1);
                // Bottom right
                rectangle(temp_window, Rect(resized.x + 2*resized.width, resized.y + 2*resized.height, resized.width, resized.height), Scalar(255), 1);

                if(draw_planes){
                    Rect resized_inner(current_rect.x * resize_storage_factor, current_rect.y * resize_storage_factor, current_rect.width * resize_storage_factor, current_rect.height * resize_storage_factor);
                    // Top left
                    rectangle(single_feature, resized_inner, Scalar(255), 1);
                    // Top middle
                    rectangle(single_feature, Rect(resized_inner.x + resized_inner.width, resized_inner.y, resized_inner.width, resized_inner.height), Scalar(255), 1);
                    // Top right
                    rectangle(single_feature, Rect(resized_inner.x + 2*resized_inner.width, resized_inner.y, resized_inner.width, resized_inner.height), Scalar(255), 1);
                    // Middle left
                    rectangle(single_feature, Rect(resized_inner.x, resized_inner.y + resized_inner.height, resized_inner.width, resized_inner.height), Scalar(255), 1);
                    // Middle middle
                    rectangle(single_feature, Rect(resized_inner.x + resized_inner.width, resized_inner.y + resized_inner.height, resized_inner.width, resized_inner.height), Scalar(255), FILLED);
                    // Middle right
                    rectangle(single_feature, Rect(resized_inner.x + 2*resized_inner.width, resized_inner.y + resized_inner.height, resized_inner.width, resized_inner.height), Scalar(255), 1);
                    // Bottom left
                    rectangle(single_feature, Rect(resized_inner.x, resized_inner.y + 2*resized_inner.height, resized_inner.width, resized_inner.height), Scalar(255), 1);
                    // Bottom middle
                    rectangle(single_feature, Rect(resized_inner.x + resized_inner.width, resized_inner.y + 2*resized_inner.height, resized_inner.width, resized_inner.height), Scalar(255), 1);
                    // Bottom right
                    rectangle(single_feature, Rect(resized_inner.x + 2*resized_inner.width, resized_inner.y + 2*resized_inner.height, resized_inner.width, resized_inner.height), Scalar(255), 1);

                    single_feature.copyTo(image_plane(Rect(0 + (fid%cols_prefered)*single_feature.cols, 0 + (fid/cols_prefered) * single_feature.rows, single_feature.cols, single_feature.rows)));
                }

                putText(temp_metadata, meta1.str(), Point(15,15), FONT_HERSHEY_SIMPLEX, 0.5, Scalar(255));
                putText(temp_metadata, meta2.str(), Point(15,40), FONT_HERSHEY_SIMPLEX, 0.5, Scalar(255));
                imshow("metadata", temp_metadata);
                imshow("features", temp_window);
                putText(temp_window, meta1.str(), Point(15,15), FONT_HERSHEY_SIMPLEX, 0.5, Scalar(255));
                result_video.write(temp_window);

                waitKey(timing);
            }

            //Store the stage image if needed
            if(draw_planes){
                stringstream save_location;
                save_location << output_folder << "stage_" << sid << ".png";
                imwrite(save_location.str(), image_plane);
            }
        }
    }
    return 0;
}