warp_affine.cl 15.7 KB
Newer Older
wester committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2010-2012, Institute Of Software Chinese Academy Of Science, all rights reserved.
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// @Authors
//    Zhang Ying, zhangying913@gmail.com
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors as is and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#ifdef DOUBLE_SUPPORT
#ifdef cl_amd_fp64
#pragma OPENCL EXTENSION cl_amd_fp64:enable
#elif defined (cl_khr_fp64)
#pragma OPENCL EXTENSION cl_khr_fp64:enable
#endif
#define CT double
#else
#define CT float
#endif

#define INTER_BITS 5
#define INTER_TAB_SIZE (1 << INTER_BITS)
#define INTER_SCALE 1.f/INTER_TAB_SIZE
#define AB_BITS max(10, (int)INTER_BITS)
#define AB_SCALE (1 << AB_BITS)
#define INTER_REMAP_COEF_BITS 15
#define INTER_REMAP_COEF_SCALE (1 << INTER_REMAP_COEF_BITS)
#define ROUND_DELTA (1 << (AB_BITS - INTER_BITS - 1))

#define noconvert

#ifndef ST
#define ST T
#endif

#if cn != 3
#define loadpix(addr)  *(__global const T*)(addr)
#define storepix(val, addr)  *(__global T*)(addr) = val
#define scalar scalar_
#define pixsize (int)sizeof(T)
#else
#define loadpix(addr)  vload3(0, (__global const T1*)(addr))
#define storepix(val, addr) vstore3(val, 0, (__global T1*)(addr))
#ifdef INTER_NEAREST
#define scalar (T)(scalar_.x, scalar_.y, scalar_.z)
#else
#define scalar (WT)(scalar_.x, scalar_.y, scalar_.z)
#endif
#define pixsize ((int)sizeof(T1)*3)
#endif

#ifdef INTER_NEAREST

__kernel void warpAffine(__global const uchar * srcptr, int src_step, int src_offset, int src_rows, int src_cols,
                         __global uchar * dstptr, int dst_step, int dst_offset, int dst_rows, int dst_cols,
                         __constant CT * M, ST scalar_)
{
    int dx = get_global_id(0);
    int dy0 = get_global_id(1) * rowsPerWI;

    if (dx < dst_cols)
    {
        int round_delta = (AB_SCALE >> 1);

        int X0_ = rint(M[0] * dx * AB_SCALE);
        int Y0_ = rint(M[3] * dx * AB_SCALE);
        int dst_index = mad24(dy0, dst_step, mad24(dx, pixsize, dst_offset));

        for (int dy = dy0, dy1 = min(dst_rows, dy0 + rowsPerWI); dy < dy1; ++dy, dst_index += dst_step)
        {
a  
Kai Westerkamp committed
107 108
            int X0 = X0_ + rint(fma(M[1], dy, M[2]) * AB_SCALE) + round_delta;
            int Y0 = Y0_ + rint(fma(M[4], dy, M[5]) * AB_SCALE) + round_delta;
wester committed
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148

            short sx = convert_short_sat(X0 >> AB_BITS);
            short sy = convert_short_sat(Y0 >> AB_BITS);

            if (sx >= 0 && sx < src_cols && sy >= 0 && sy < src_rows)
            {
                int src_index = mad24(sy, src_step, mad24(sx, pixsize, src_offset));
                storepix(loadpix(srcptr + src_index), dstptr + dst_index);
            }
            else
                storepix(scalar, dstptr + dst_index);
        }
    }
}

#elif defined INTER_LINEAR

__constant float coeffs[64] =
{ 1.000000f, 0.000000f, 0.968750f, 0.031250f, 0.937500f, 0.062500f, 0.906250f, 0.093750f, 0.875000f, 0.125000f, 0.843750f, 0.156250f,
    0.812500f, 0.187500f, 0.781250f, 0.218750f, 0.750000f, 0.250000f, 0.718750f, 0.281250f, 0.687500f, 0.312500f, 0.656250f, 0.343750f,
    0.625000f, 0.375000f, 0.593750f, 0.406250f, 0.562500f, 0.437500f, 0.531250f, 0.468750f, 0.500000f, 0.500000f, 0.468750f, 0.531250f,
    0.437500f, 0.562500f, 0.406250f, 0.593750f, 0.375000f, 0.625000f, 0.343750f, 0.656250f, 0.312500f, 0.687500f, 0.281250f, 0.718750f,
    0.250000f, 0.750000f, 0.218750f, 0.781250f, 0.187500f, 0.812500f, 0.156250f, 0.843750f, 0.125000f, 0.875000f, 0.093750f, 0.906250f,
    0.062500f, 0.937500f, 0.031250f, 0.968750f };

__kernel void warpAffine(__global const uchar * srcptr, int src_step, int src_offset, int src_rows, int src_cols,
                         __global uchar * dstptr, int dst_step, int dst_offset, int dst_rows, int dst_cols,
                         __constant CT * M, ST scalar_)
{
    int dx = get_global_id(0);
    int dy0 = get_global_id(1) * rowsPerWI;

    if (dx < dst_cols)
    {
        int tmp = dx << AB_BITS;
        int X0_ = rint(M[0] * tmp);
        int Y0_ = rint(M[3] * tmp);

        for (int dy = dy0, dy1 = min(dst_rows, dy0 + rowsPerWI); dy < dy1; ++dy)
        {
a  
Kai Westerkamp committed
149 150
            int X0 = X0_ + rint(fma(M[1], dy, M[2]) * AB_SCALE) + ROUND_DELTA;
            int Y0 = Y0_ + rint(fma(M[4], dy, M[5]) * AB_SCALE) + ROUND_DELTA;
wester committed
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
            X0 = X0 >> (AB_BITS - INTER_BITS);
            Y0 = Y0 >> (AB_BITS - INTER_BITS);

            short sx = convert_short_sat(X0 >> INTER_BITS), sy = convert_short_sat(Y0 >> INTER_BITS);
            short ax = convert_short(X0 & (INTER_TAB_SIZE-1)), ay = convert_short(Y0 & (INTER_TAB_SIZE-1));

#if defined AMD_DEVICE || depth > 4
            WT v0 = scalar, v1 = scalar, v2 = scalar, v3 = scalar;
            if (sx >= 0 && sx < src_cols)
            {
                if (sy >= 0 && sy < src_rows)
                    v0 = convertToWT(loadpix(srcptr + mad24(sy, src_step, mad24(sx, pixsize, src_offset))));
                if (sy+1 >= 0 && sy+1 < src_rows)
                    v2 = convertToWT(loadpix(srcptr + mad24(sy+1, src_step, mad24(sx, pixsize, src_offset))));
            }
            if (sx+1 >= 0 && sx+1 < src_cols)
            {
                if (sy >= 0 && sy < src_rows)
                    v1 = convertToWT(loadpix(srcptr + mad24(sy, src_step, mad24(sx+1, pixsize, src_offset))));
                if (sy+1 >= 0 && sy+1 < src_rows)
                    v3 = convertToWT(loadpix(srcptr + mad24(sy+1, src_step, mad24(sx+1, pixsize, src_offset))));
            }

            float taby = 1.f/INTER_TAB_SIZE*ay;
            float tabx = 1.f/INTER_TAB_SIZE*ax;

            int dst_index = mad24(dy, dst_step, mad24(dx, pixsize, dst_offset));

#if depth <= 4
            int itab0 = convert_short_sat_rte( (1.0f-taby)*(1.0f-tabx) * INTER_REMAP_COEF_SCALE );
            int itab1 = convert_short_sat_rte( (1.0f-taby)*tabx * INTER_REMAP_COEF_SCALE );
            int itab2 = convert_short_sat_rte( taby*(1.0f-tabx) * INTER_REMAP_COEF_SCALE );
            int itab3 = convert_short_sat_rte( taby*tabx * INTER_REMAP_COEF_SCALE );

            WT val = mad24(v0, itab0, mad24(v1, itab1, mad24(v2, itab2, v3 * itab3)));
            storepix(convertToT((val + (1 << (INTER_REMAP_COEF_BITS-1))) >> INTER_REMAP_COEF_BITS), dstptr + dst_index);
#else
            float tabx2 = 1.0f - tabx, taby2 = 1.0f - taby;
            WT val = fma(tabx2, fma(v0, taby2, v2 * taby), tabx * fma(v1, taby2, v3 * taby));
            storepix(convertToT(val), dstptr + dst_index);
#endif
#else // INTEL_DEVICE
            __constant float * coeffs_y = coeffs + (ay << 1), * coeffs_x = coeffs + (ax << 1);

            int src_index0 = mad24(sy, src_step, mad24(sx, pixsize, src_offset)), src_index;
            int dst_index = mad24(dy, dst_step, mad24(dx, pixsize, dst_offset));

            WT sum = (WT)(0), xsum;
            #pragma unroll
            for (int y = 0; y < 2; y++)
            {
                src_index = mad24(y, src_step, src_index0);
                if (sy + y >= 0 && sy + y < src_rows)
                {
                    xsum = (WT)(0);
                    if (sx >= 0 && sx + 2 < src_cols)
                    {
#if depth == 0 && cn == 1
                        uchar2 value = vload2(0, srcptr + src_index);
                        xsum = dot(convert_float2(value), (float2)(coeffs_x[0], coeffs_x[1]));
#else
                        #pragma unroll
                        for (int x = 0; x < 2; x++)
                            xsum = fma(convertToWT(loadpix(srcptr + mad24(x, pixsize, src_index))), coeffs_x[x], xsum);
#endif
                    }
                    else
                    {
                        #pragma unroll
                        for (int x = 0; x < 2; x++)
                            xsum = fma(sx + x >= 0 && sx + x < src_cols ?
                                       convertToWT(loadpix(srcptr + mad24(x, pixsize, src_index))) : scalar, coeffs_x[x], xsum);
                    }
                    sum = fma(xsum, coeffs_y[y], sum);
                }
                else
                    sum = fma(scalar, coeffs_y[y], sum);
            }

            storepix(convertToT(sum), dstptr + dst_index);
#endif
        }
    }
}

#elif defined INTER_CUBIC

#ifdef AMD_DEVICE

inline void interpolateCubic( float x, float* coeffs )
{
    const float A = -0.75f;

    coeffs[0] = fma(fma(fma(A, (x + 1.f), - 5.0f*A), (x + 1.f), 8.0f*A), x + 1.f, - 4.0f*A);
    coeffs[1] = fma(fma(A + 2.f, x, - (A + 3.f)), x*x, 1.f);
    coeffs[2] = fma(fma(A + 2.f, 1.f - x, - (A + 3.f)), (1.f - x)*(1.f - x), 1.f);
    coeffs[3] = 1.f - coeffs[0] - coeffs[1] - coeffs[2];
}

#else

__constant float coeffs[128] =
    { 0.000000f, 1.000000f, 0.000000f, 0.000000f, -0.021996f, 0.997841f, 0.024864f, -0.000710f, -0.041199f, 0.991516f, 0.052429f, -0.002747f,
    -0.057747f, 0.981255f, 0.082466f, -0.005974f, -0.071777f, 0.967285f, 0.114746f, -0.010254f, -0.083427f, 0.949837f, 0.149040f, -0.015450f,
    -0.092834f, 0.929138f, 0.185120f, -0.021423f, -0.100136f, 0.905418f, 0.222755f, -0.028038f, -0.105469f, 0.878906f, 0.261719f, -0.035156f,
    -0.108971f, 0.849831f, 0.301781f, -0.042641f, -0.110779f, 0.818420f, 0.342712f, -0.050354f, -0.111031f, 0.784904f, 0.384285f, -0.058159f,
    -0.109863f, 0.749512f, 0.426270f, -0.065918f, -0.107414f, 0.712471f, 0.468437f, -0.073494f, -0.103821f, 0.674011f, 0.510559f, -0.080750f,
    -0.099220f, 0.634361f, 0.552406f, -0.087547f, -0.093750f, 0.593750f, 0.593750f, -0.093750f, -0.087547f, 0.552406f, 0.634361f, -0.099220f,
    -0.080750f, 0.510559f, 0.674011f, -0.103821f, -0.073494f, 0.468437f, 0.712471f, -0.107414f, -0.065918f, 0.426270f, 0.749512f, -0.109863f,
    -0.058159f, 0.384285f, 0.784904f, -0.111031f, -0.050354f, 0.342712f, 0.818420f, -0.110779f, -0.042641f, 0.301781f, 0.849831f, -0.108971f,
    -0.035156f, 0.261719f, 0.878906f, -0.105469f, -0.028038f, 0.222755f, 0.905418f, -0.100136f, -0.021423f, 0.185120f, 0.929138f, -0.092834f,
    -0.015450f, 0.149040f, 0.949837f, -0.083427f, -0.010254f, 0.114746f, 0.967285f, -0.071777f, -0.005974f, 0.082466f, 0.981255f, -0.057747f,
    -0.002747f, 0.052429f, 0.991516f, -0.041199f, -0.000710f, 0.024864f, 0.997841f, -0.021996f };

#endif

__kernel void warpAffine(__global const uchar * srcptr, int src_step, int src_offset, int src_rows, int src_cols,
                         __global uchar * dstptr, int dst_step, int dst_offset, int dst_rows, int dst_cols,
                         __constant CT * M, ST scalar_)
{
    int dx = get_global_id(0);
    int dy = get_global_id(1);

    if (dx < dst_cols && dy < dst_rows)
    {
        int tmp = (dx << AB_BITS);
a  
Kai Westerkamp committed
277 278
        int X0 = rint(M[0] * tmp) + rint(fma(M[1], dy, M[2]) * AB_SCALE) + ROUND_DELTA;
        int Y0 = rint(M[3] * tmp) + rint(fma(M[4], dy, M[5]) * AB_SCALE) + ROUND_DELTA;
wester committed
279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375

        X0 = X0 >> (AB_BITS - INTER_BITS);
        Y0 = Y0 >> (AB_BITS - INTER_BITS);

        int sx = (short)(X0 >> INTER_BITS) - 1, sy = (short)(Y0 >> INTER_BITS) - 1;
        int ay = (short)(Y0 & (INTER_TAB_SIZE - 1)), ax = (short)(X0 & (INTER_TAB_SIZE - 1));

#ifdef AMD_DEVICE
        WT v[16];
        #pragma unroll
        for (int y = 0; y < 4; y++)
        {
            if (sy+y >= 0 && sy+y < src_rows)
            {
                #pragma unroll
                for (int x = 0; x < 4; x++)
                    v[mad24(y, 4, x)] = sx+x >= 0 && sx+x < src_cols ?
                        convertToWT(loadpix(srcptr + mad24(sy+y, src_step, mad24(sx+x, pixsize, src_offset)))) : scalar;
            }
            else
            {
                #pragma unroll
                for (int x = 0; x < 4; x++)
                    v[mad24(y, 4, x)] = scalar;
            }
        }

        float tab1y[4], tab1x[4];

        float ayy = INTER_SCALE * ay;
        float axx = INTER_SCALE * ax;
        interpolateCubic(ayy, tab1y);
        interpolateCubic(axx, tab1x);

        int dst_index = mad24(dy, dst_step, mad24(dx, pixsize, dst_offset));

        WT sum = (WT)(0);
#if depth <= 4
        int itab[16];

        #pragma unroll
        for (int i = 0; i < 16; i++)
            itab[i] = rint(tab1y[(i>>2)] * tab1x[(i&3)] * INTER_REMAP_COEF_SCALE);

        #pragma unroll
        for (int i = 0; i < 16; i++)
            sum = mad24(v[i], itab[i], sum);
        storepix(convertToT( (sum + (1 << (INTER_REMAP_COEF_BITS-1))) >> INTER_REMAP_COEF_BITS ), dstptr + dst_index);
#else
        #pragma unroll
        for (int i = 0; i < 16; i++)
            sum = fma(v[i], tab1y[(i>>2)] * tab1x[(i&3)], sum);
        storepix(convertToT( sum ), dstptr + dst_index);
#endif
#else // INTEL_DEVICE
        __constant float * coeffs_y = coeffs + (ay << 2), * coeffs_x = coeffs + (ax << 2);

        int src_index0 = mad24(sy, src_step, mad24(sx, pixsize, src_offset)), src_index;
        int dst_index = mad24(dy, dst_step, mad24(dx, pixsize, dst_offset));

        WT sum = (WT)(0), xsum;
        #pragma unroll
        for (int y = 0; y < 4; y++)
        {
            src_index = mad24(y, src_step, src_index0);
            if (sy + y >= 0 && sy + y < src_rows)
            {
                xsum = (WT)(0);
                if (sx >= 0 && sx + 4 < src_cols)
                {
#if depth == 0 && cn == 1
                    uchar4 value = vload4(0, srcptr + src_index);
                    xsum = dot(convert_float4(value), (float4)(coeffs_x[0], coeffs_x[1], coeffs_x[2], coeffs_x[3]));
#else
                    #pragma unroll
                    for (int x = 0; x < 4; x++)
                        xsum = fma(convertToWT(loadpix(srcptr + mad24(x, pixsize, src_index))), coeffs_x[x], xsum);
#endif
                }
                else
                {
                    #pragma unroll
                    for (int x = 0; x < 4; x++)
                        xsum = fma(sx + x >= 0 && sx + x < src_cols ?
                                   convertToWT(loadpix(srcptr + mad24(x, pixsize, src_index))) : scalar, coeffs_x[x], xsum);
                }
                sum = fma(xsum, coeffs_y[y], sum);
            }
            else
                sum = fma(scalar, coeffs_y[y], sum);
        }

        storepix(convertToT(sum), dstptr + dst_index);
#endif
    }
}

a  
Kai Westerkamp committed
376
#endif