stereobp.cpp 14.7 KB
Newer Older
wester committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#include "precomp.hpp"

using namespace cv;
using namespace cv::cuda;

#if !defined (HAVE_CUDA) || defined (CUDA_DISABLER)

void cv::cuda::StereoBeliefPropagation::estimateRecommendedParams(int, int, int&, int&, int&) { throw_no_cuda(); }

Ptr<cuda::StereoBeliefPropagation> cv::cuda::createStereoBeliefPropagation(int, int, int, int) { throw_no_cuda(); return Ptr<cuda::StereoBeliefPropagation>(); }

#else /* !defined (HAVE_CUDA) */

namespace cv { namespace cuda { namespace device
{
    namespace stereobp
    {
        void load_constants(int ndisp, float max_data_term, float data_weight, float max_disc_term, float disc_single_jump);
        template<typename T, typename D>
        void comp_data_gpu(const PtrStepSzb& left, const PtrStepSzb& right, const PtrStepSzb& data, cudaStream_t stream);
        template<typename T>
        void data_step_down_gpu(int dst_cols, int dst_rows, int src_rows, const PtrStepSzb& src, const PtrStepSzb& dst, cudaStream_t stream);
        template <typename T>
        void level_up_messages_gpu(int dst_idx, int dst_cols, int dst_rows, int src_rows, PtrStepSzb* mus, PtrStepSzb* mds, PtrStepSzb* mls, PtrStepSzb* mrs, cudaStream_t stream);
        template <typename T>
        void calc_all_iterations_gpu(int cols, int rows, int iters, const PtrStepSzb& u, const PtrStepSzb& d,
            const PtrStepSzb& l, const PtrStepSzb& r, const PtrStepSzb& data, cudaStream_t stream);
        template <typename T>
        void output_gpu(const PtrStepSzb& u, const PtrStepSzb& d, const PtrStepSzb& l, const PtrStepSzb& r, const PtrStepSzb& data,
            const PtrStepSz<short>& disp, cudaStream_t stream);
    }
}}}

namespace
{
    class StereoBPImpl : public cuda::StereoBeliefPropagation
    {
    public:
        StereoBPImpl(int ndisp, int iters, int levels, int msg_type);

        void compute(InputArray left, InputArray right, OutputArray disparity);
        void compute(InputArray left, InputArray right, OutputArray disparity, Stream& stream);
        void compute(InputArray data, OutputArray disparity, Stream& stream);

        int getMinDisparity() const { return 0; }
        void setMinDisparity(int /*minDisparity*/) {}

        int getNumDisparities() const { return ndisp_; }
        void setNumDisparities(int numDisparities) { ndisp_ = numDisparities; }

        int getBlockSize() const { return 0; }
        void setBlockSize(int /*blockSize*/) {}

        int getSpeckleWindowSize() const { return 0; }
        void setSpeckleWindowSize(int /*speckleWindowSize*/) {}

        int getSpeckleRange() const { return 0; }
        void setSpeckleRange(int /*speckleRange*/) {}

        int getDisp12MaxDiff() const { return 0; }
        void setDisp12MaxDiff(int /*disp12MaxDiff*/) {}

        int getNumIters() const { return iters_; }
        void setNumIters(int iters) { iters_ = iters; }

        int getNumLevels() const { return levels_; }
        void setNumLevels(int levels) { levels_ = levels; }

        double getMaxDataTerm() const { return max_data_term_; }
        void setMaxDataTerm(double max_data_term) { max_data_term_ = (float) max_data_term; }

        double getDataWeight() const { return data_weight_; }
        void setDataWeight(double data_weight) { data_weight_ = (float) data_weight; }

        double getMaxDiscTerm() const { return max_disc_term_; }
        void setMaxDiscTerm(double max_disc_term) { max_disc_term_ = (float) max_disc_term; }

        double getDiscSingleJump() const { return disc_single_jump_; }
        void setDiscSingleJump(double disc_single_jump) { disc_single_jump_ = (float) disc_single_jump; }

        int getMsgType() const { return msg_type_; }
        void setMsgType(int msg_type) { msg_type_ = msg_type; }

    private:
        void init(Stream& stream);
        void calcBP(OutputArray disp, Stream& stream);

        int ndisp_;
        int iters_;
        int levels_;
        float max_data_term_;
        float data_weight_;
        float max_disc_term_;
        float disc_single_jump_;
        int msg_type_;

        float scale_;
        int rows_, cols_;
        std::vector<int> cols_all_, rows_all_;
        GpuMat u_, d_, l_, r_, u2_, d2_, l2_, r2_;
        std::vector<GpuMat> datas_;
        GpuMat outBuf_;
    };

    const float DEFAULT_MAX_DATA_TERM = 10.0f;
    const float DEFAULT_DATA_WEIGHT = 0.07f;
    const float DEFAULT_MAX_DISC_TERM = 1.7f;
    const float DEFAULT_DISC_SINGLE_JUMP = 1.0f;

    StereoBPImpl::StereoBPImpl(int ndisp, int iters, int levels, int msg_type) :
        ndisp_(ndisp), iters_(iters), levels_(levels),
        max_data_term_(DEFAULT_MAX_DATA_TERM), data_weight_(DEFAULT_DATA_WEIGHT),
        max_disc_term_(DEFAULT_MAX_DISC_TERM), disc_single_jump_(DEFAULT_DISC_SINGLE_JUMP),
        msg_type_(msg_type)
    {
    }

    void StereoBPImpl::compute(InputArray left, InputArray right, OutputArray disparity)
    {
        compute(left, right, disparity, Stream::Null());
    }

    void StereoBPImpl::compute(InputArray _left, InputArray _right, OutputArray disparity, Stream& stream)
    {
        using namespace cv::cuda::device::stereobp;

        typedef void (*comp_data_t)(const PtrStepSzb& left, const PtrStepSzb& right, const PtrStepSzb& data, cudaStream_t stream);
        static const comp_data_t comp_data_callers[2][5] =
        {
            {0, comp_data_gpu<unsigned char, short>, 0, comp_data_gpu<uchar3, short>, comp_data_gpu<uchar4, short>},
            {0, comp_data_gpu<unsigned char, float>, 0, comp_data_gpu<uchar3, float>, comp_data_gpu<uchar4, float>}
        };

        scale_ = msg_type_ == CV_32F ? 1.0f : 10.0f;

        CV_Assert( 0 < ndisp_ && 0 < iters_ && 0 < levels_ );
        CV_Assert( msg_type_ == CV_32F || msg_type_ == CV_16S );
        CV_Assert( msg_type_ == CV_32F || (1 << (levels_ - 1)) * scale_ * max_data_term_ < std::numeric_limits<short>::max() );

        GpuMat left = _left.getGpuMat();
        GpuMat right = _right.getGpuMat();

        CV_Assert( left.type() == CV_8UC1 || left.type() == CV_8UC3 || left.type() == CV_8UC4 );
        CV_Assert( left.size() == right.size() && left.type() == right.type() );

        rows_ = left.rows;
        cols_ = left.cols;

        const int divisor = (int) pow(2.f, levels_ - 1.0f);
        const int lowest_cols = cols_ / divisor;
        const int lowest_rows = rows_ / divisor;
        const int min_image_dim_size = 2;
        CV_Assert( std::min(lowest_cols, lowest_rows) > min_image_dim_size );

        init(stream);

        datas_[0].create(rows_ * ndisp_, cols_, msg_type_);

        comp_data_callers[msg_type_ == CV_32F][left.channels()](left, right, datas_[0], StreamAccessor::getStream(stream));

        calcBP(disparity, stream);
    }

    void StereoBPImpl::compute(InputArray _data, OutputArray disparity, Stream& stream)
    {
        scale_ = msg_type_ == CV_32F ? 1.0f : 10.0f;

        CV_Assert( 0 < ndisp_ && 0 < iters_ && 0 < levels_ );
        CV_Assert( msg_type_ == CV_32F || msg_type_ == CV_16S );
        CV_Assert( msg_type_ == CV_32F || (1 << (levels_ - 1)) * scale_ * max_data_term_ < std::numeric_limits<short>::max() );

        GpuMat data = _data.getGpuMat();

        CV_Assert( (data.type() == msg_type_) && (data.rows % ndisp_ == 0) );

        rows_ = data.rows / ndisp_;
        cols_ = data.cols;

        const int divisor = (int) pow(2.f, levels_ - 1.0f);
        const int lowest_cols = cols_ / divisor;
        const int lowest_rows = rows_ / divisor;
        const int min_image_dim_size = 2;
        CV_Assert( std::min(lowest_cols, lowest_rows) > min_image_dim_size );

        init(stream);

        data.copyTo(datas_[0], stream);

        calcBP(disparity, stream);
    }

    void StereoBPImpl::init(Stream& stream)
    {
        using namespace cv::cuda::device::stereobp;

        u_.create(rows_ * ndisp_, cols_, msg_type_);
        d_.create(rows_ * ndisp_, cols_, msg_type_);
        l_.create(rows_ * ndisp_, cols_, msg_type_);
        r_.create(rows_ * ndisp_, cols_, msg_type_);

        if (levels_ & 1)
        {
            //can clear less area
            u_.setTo(0, stream);
            d_.setTo(0, stream);
            l_.setTo(0, stream);
            r_.setTo(0, stream);
        }

        if (levels_ > 1)
        {
            int less_rows = (rows_ + 1) / 2;
            int less_cols = (cols_ + 1) / 2;

            u2_.create(less_rows * ndisp_, less_cols, msg_type_);
            d2_.create(less_rows * ndisp_, less_cols, msg_type_);
            l2_.create(less_rows * ndisp_, less_cols, msg_type_);
            r2_.create(less_rows * ndisp_, less_cols, msg_type_);

            if ((levels_ & 1) == 0)
            {
                u2_.setTo(0, stream);
                d2_.setTo(0, stream);
                l2_.setTo(0, stream);
                r2_.setTo(0, stream);
            }
        }

        load_constants(ndisp_, max_data_term_, scale_ * data_weight_, scale_ * max_disc_term_, scale_ * disc_single_jump_);

        datas_.resize(levels_);

        cols_all_.resize(levels_);
        rows_all_.resize(levels_);

        cols_all_[0] = cols_;
        rows_all_[0] = rows_;
    }

    void StereoBPImpl::calcBP(OutputArray disp, Stream& _stream)
    {
        using namespace cv::cuda::device::stereobp;

        typedef void (*data_step_down_t)(int dst_cols, int dst_rows, int src_rows, const PtrStepSzb& src, const PtrStepSzb& dst, cudaStream_t stream);
        static const data_step_down_t data_step_down_callers[2] =
        {
            data_step_down_gpu<short>, data_step_down_gpu<float>
        };

        typedef void (*level_up_messages_t)(int dst_idx, int dst_cols, int dst_rows, int src_rows, PtrStepSzb* mus, PtrStepSzb* mds, PtrStepSzb* mls, PtrStepSzb* mrs, cudaStream_t stream);
        static const level_up_messages_t level_up_messages_callers[2] =
        {
            level_up_messages_gpu<short>, level_up_messages_gpu<float>
        };

        typedef void (*calc_all_iterations_t)(int cols, int rows, int iters, const PtrStepSzb& u, const PtrStepSzb& d, const PtrStepSzb& l, const PtrStepSzb& r, const PtrStepSzb& data, cudaStream_t stream);
        static const calc_all_iterations_t calc_all_iterations_callers[2] =
        {
            calc_all_iterations_gpu<short>, calc_all_iterations_gpu<float>
        };

        typedef void (*output_t)(const PtrStepSzb& u, const PtrStepSzb& d, const PtrStepSzb& l, const PtrStepSzb& r, const PtrStepSzb& data, const PtrStepSz<short>& disp, cudaStream_t stream);
        static const output_t output_callers[2] =
        {
            output_gpu<short>, output_gpu<float>
        };

        const int funcIdx = msg_type_ == CV_32F;

        cudaStream_t stream = StreamAccessor::getStream(_stream);

        for (int i = 1; i < levels_; ++i)
        {
            cols_all_[i] = (cols_all_[i-1] + 1) / 2;
            rows_all_[i] = (rows_all_[i-1] + 1) / 2;

            datas_[i].create(rows_all_[i] * ndisp_, cols_all_[i], msg_type_);

            data_step_down_callers[funcIdx](cols_all_[i], rows_all_[i], rows_all_[i-1], datas_[i-1], datas_[i], stream);
        }

        PtrStepSzb mus[] = {u_, u2_};
        PtrStepSzb mds[] = {d_, d2_};
        PtrStepSzb mrs[] = {r_, r2_};
        PtrStepSzb mls[] = {l_, l2_};

        int mem_idx = (levels_ & 1) ? 0 : 1;

        for (int i = levels_ - 1; i >= 0; --i)
        {
            // for lower level we have already computed messages by setting to zero
            if (i != levels_ - 1)
                level_up_messages_callers[funcIdx](mem_idx, cols_all_[i], rows_all_[i], rows_all_[i+1], mus, mds, mls, mrs, stream);

            calc_all_iterations_callers[funcIdx](cols_all_[i], rows_all_[i], iters_, mus[mem_idx], mds[mem_idx], mls[mem_idx], mrs[mem_idx], datas_[i], stream);

            mem_idx = (mem_idx + 1) & 1;
        }

        const int dtype = disp.fixedType() ? disp.type() : CV_16SC1;

        disp.create(rows_, cols_, dtype);
        GpuMat out = disp.getGpuMat();

        if (dtype != CV_16SC1)
        {
            outBuf_.create(rows_, cols_, CV_16SC1);
            out = outBuf_;
        }

        out.setTo(0, _stream);

        output_callers[funcIdx](u_, d_, l_, r_, datas_.front(), out, stream);

        if (dtype != CV_16SC1)
            out.convertTo(disp, dtype, _stream);
    }
}

Ptr<cuda::StereoBeliefPropagation> cv::cuda::createStereoBeliefPropagation(int ndisp, int iters, int levels, int msg_type)
{
    return makePtr<StereoBPImpl>(ndisp, iters, levels, msg_type);
}

void cv::cuda::StereoBeliefPropagation::estimateRecommendedParams(int width, int height, int& ndisp, int& iters, int& levels)
{
    ndisp = width / 4;
    if ((ndisp & 1) != 0)
        ndisp++;

    int mm = std::max(width, height);
    iters = mm / 100 + 2;

    levels = (int)(::log(static_cast<double>(mm)) + 1) * 4 / 5;
    if (levels == 0) levels++;
}

#endif /* !defined (HAVE_CUDA) */