cudaimgproc.hpp 29.8 KB
Newer Older
wester committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

a  
Kai Westerkamp committed
43 44
#ifndef __OPENCV_CUDAIMGPROC_HPP__
#define __OPENCV_CUDAIMGPROC_HPP__
wester committed
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727

#ifndef __cplusplus
#  error cudaimgproc.hpp header must be compiled as C++
#endif

#include "opencv2/core/cuda.hpp"
#include "opencv2/imgproc.hpp"

/**
  @addtogroup cuda
  @{
    @defgroup cudaimgproc Image Processing
    @{
      @defgroup cudaimgproc_color Color space processing
      @defgroup cudaimgproc_hist Histogram Calculation
      @defgroup cudaimgproc_hough Hough Transform
      @defgroup cudaimgproc_feature Feature Detection
    @}
  @}
*/

namespace cv { namespace cuda {

//! @addtogroup cudaimgproc
//! @{

/////////////////////////// Color Processing ///////////////////////////

//! @addtogroup cudaimgproc_color
//! @{

/** @brief Converts an image from one color space to another.

@param src Source image with CV_8U , CV_16U , or CV_32F depth and 1, 3, or 4 channels.
@param dst Destination image.
@param code Color space conversion code. For details, see cvtColor .
@param dcn Number of channels in the destination image. If the parameter is 0, the number of the
channels is derived automatically from src and the code .
@param stream Stream for the asynchronous version.

3-channel color spaces (like HSV, XYZ, and so on) can be stored in a 4-channel image for better
performance.

@sa cvtColor
 */
CV_EXPORTS void cvtColor(InputArray src, OutputArray dst, int code, int dcn = 0, Stream& stream = Stream::Null());

enum DemosaicTypes
{
    //! Bayer Demosaicing (Malvar, He, and Cutler)
    COLOR_BayerBG2BGR_MHT = 256,
    COLOR_BayerGB2BGR_MHT = 257,
    COLOR_BayerRG2BGR_MHT = 258,
    COLOR_BayerGR2BGR_MHT = 259,

    COLOR_BayerBG2RGB_MHT = COLOR_BayerRG2BGR_MHT,
    COLOR_BayerGB2RGB_MHT = COLOR_BayerGR2BGR_MHT,
    COLOR_BayerRG2RGB_MHT = COLOR_BayerBG2BGR_MHT,
    COLOR_BayerGR2RGB_MHT = COLOR_BayerGB2BGR_MHT,

    COLOR_BayerBG2GRAY_MHT = 260,
    COLOR_BayerGB2GRAY_MHT = 261,
    COLOR_BayerRG2GRAY_MHT = 262,
    COLOR_BayerGR2GRAY_MHT = 263
};

/** @brief Converts an image from Bayer pattern to RGB or grayscale.

@param src Source image (8-bit or 16-bit single channel).
@param dst Destination image.
@param code Color space conversion code (see the description below).
@param dcn Number of channels in the destination image. If the parameter is 0, the number of the
channels is derived automatically from src and the code .
@param stream Stream for the asynchronous version.

The function can do the following transformations:

-   Demosaicing using bilinear interpolation

    > -   COLOR_BayerBG2GRAY , COLOR_BayerGB2GRAY , COLOR_BayerRG2GRAY , COLOR_BayerGR2GRAY
    > -   COLOR_BayerBG2BGR , COLOR_BayerGB2BGR , COLOR_BayerRG2BGR , COLOR_BayerGR2BGR

-   Demosaicing using Malvar-He-Cutler algorithm (@cite MHT2011)

    > -   COLOR_BayerBG2GRAY_MHT , COLOR_BayerGB2GRAY_MHT , COLOR_BayerRG2GRAY_MHT ,
    >     COLOR_BayerGR2GRAY_MHT
    > -   COLOR_BayerBG2BGR_MHT , COLOR_BayerGB2BGR_MHT , COLOR_BayerRG2BGR_MHT ,
    >     COLOR_BayerGR2BGR_MHT

@sa cvtColor
 */
CV_EXPORTS void demosaicing(InputArray src, OutputArray dst, int code, int dcn = -1, Stream& stream = Stream::Null());

/** @brief Exchanges the color channels of an image in-place.

@param image Source image. Supports only CV_8UC4 type.
@param dstOrder Integer array describing how channel values are permutated. The n-th entry of the
array contains the number of the channel that is stored in the n-th channel of the output image.
E.g. Given an RGBA image, aDstOrder = [3,2,1,0] converts this to ABGR channel order.
@param stream Stream for the asynchronous version.

The methods support arbitrary permutations of the original channels, including replication.
 */
CV_EXPORTS void swapChannels(InputOutputArray image, const int dstOrder[4], Stream& stream = Stream::Null());

/** @brief Routines for correcting image color gamma.

@param src Source image (3- or 4-channel 8 bit).
@param dst Destination image.
@param forward true for forward gamma correction or false for inverse gamma correction.
@param stream Stream for the asynchronous version.
 */
CV_EXPORTS void gammaCorrection(InputArray src, OutputArray dst, bool forward = true, Stream& stream = Stream::Null());

enum AlphaCompTypes { ALPHA_OVER, ALPHA_IN, ALPHA_OUT, ALPHA_ATOP, ALPHA_XOR, ALPHA_PLUS, ALPHA_OVER_PREMUL, ALPHA_IN_PREMUL, ALPHA_OUT_PREMUL,
       ALPHA_ATOP_PREMUL, ALPHA_XOR_PREMUL, ALPHA_PLUS_PREMUL, ALPHA_PREMUL};

/** @brief Composites two images using alpha opacity values contained in each image.

@param img1 First image. Supports CV_8UC4 , CV_16UC4 , CV_32SC4 and CV_32FC4 types.
@param img2 Second image. Must have the same size and the same type as img1 .
@param dst Destination image.
@param alpha_op Flag specifying the alpha-blending operation:
-   **ALPHA_OVER**
-   **ALPHA_IN**
-   **ALPHA_OUT**
-   **ALPHA_ATOP**
-   **ALPHA_XOR**
-   **ALPHA_PLUS**
-   **ALPHA_OVER_PREMUL**
-   **ALPHA_IN_PREMUL**
-   **ALPHA_OUT_PREMUL**
-   **ALPHA_ATOP_PREMUL**
-   **ALPHA_XOR_PREMUL**
-   **ALPHA_PLUS_PREMUL**
-   **ALPHA_PREMUL**
@param stream Stream for the asynchronous version.

@note
   -   An example demonstrating the use of alphaComp can be found at
        opencv_source_code/samples/gpu/alpha_comp.cpp
 */
CV_EXPORTS void alphaComp(InputArray img1, InputArray img2, OutputArray dst, int alpha_op, Stream& stream = Stream::Null());

//! @} cudaimgproc_color

////////////////////////////// Histogram ///////////////////////////////

//! @addtogroup cudaimgproc_hist
//! @{

/** @brief Calculates histogram for one channel 8-bit image.

@param src Source image with CV_8UC1 type.
@param hist Destination histogram with one row, 256 columns, and the CV_32SC1 type.
@param stream Stream for the asynchronous version.
 */
CV_EXPORTS void calcHist(InputArray src, OutputArray hist, Stream& stream = Stream::Null());

/** @brief Equalizes the histogram of a grayscale image.

@param src Source image with CV_8UC1 type.
@param dst Destination image.
@param stream Stream for the asynchronous version.

@sa equalizeHist
 */
CV_EXPORTS void equalizeHist(InputArray src, OutputArray dst, Stream& stream = Stream::Null());

/** @brief Base class for Contrast Limited Adaptive Histogram Equalization. :
 */
class CV_EXPORTS CLAHE : public cv::CLAHE
{
public:
    using cv::CLAHE::apply;
    /** @brief Equalizes the histogram of a grayscale image using Contrast Limited Adaptive Histogram Equalization.

    @param src Source image with CV_8UC1 type.
    @param dst Destination image.
    @param stream Stream for the asynchronous version.
     */
    virtual void apply(InputArray src, OutputArray dst, Stream& stream) = 0;
};

/** @brief Creates implementation for cuda::CLAHE .

@param clipLimit Threshold for contrast limiting.
@param tileGridSize Size of grid for histogram equalization. Input image will be divided into
equally sized rectangular tiles. tileGridSize defines the number of tiles in row and column.
 */
CV_EXPORTS Ptr<cuda::CLAHE> createCLAHE(double clipLimit = 40.0, Size tileGridSize = Size(8, 8));

/** @brief Computes levels with even distribution.

@param levels Destination array. levels has 1 row, nLevels columns, and the CV_32SC1 type.
@param nLevels Number of computed levels. nLevels must be at least 2.
@param lowerLevel Lower boundary value of the lowest level.
@param upperLevel Upper boundary value of the greatest level.
@param stream Stream for the asynchronous version.
 */
CV_EXPORTS void evenLevels(OutputArray levels, int nLevels, int lowerLevel, int upperLevel, Stream& stream = Stream::Null());

/** @brief Calculates a histogram with evenly distributed bins.

@param src Source image. CV_8U, CV_16U, or CV_16S depth and 1 or 4 channels are supported. For
a four-channel image, all channels are processed separately.
@param hist Destination histogram with one row, histSize columns, and the CV_32S type.
@param histSize Size of the histogram.
@param lowerLevel Lower boundary of lowest-level bin.
@param upperLevel Upper boundary of highest-level bin.
@param stream Stream for the asynchronous version.
 */
CV_EXPORTS void histEven(InputArray src, OutputArray hist, int histSize, int lowerLevel, int upperLevel, Stream& stream = Stream::Null());
/** @overload */
CV_EXPORTS void histEven(InputArray src, GpuMat hist[4], int histSize[4], int lowerLevel[4], int upperLevel[4], Stream& stream = Stream::Null());

/** @brief Calculates a histogram with bins determined by the levels array.

@param src Source image. CV_8U , CV_16U , or CV_16S depth and 1 or 4 channels are supported.
For a four-channel image, all channels are processed separately.
@param hist Destination histogram with one row, (levels.cols-1) columns, and the CV_32SC1 type.
@param levels Number of levels in the histogram.
@param stream Stream for the asynchronous version.
 */
CV_EXPORTS void histRange(InputArray src, OutputArray hist, InputArray levels, Stream& stream = Stream::Null());
/** @overload */
CV_EXPORTS void histRange(InputArray src, GpuMat hist[4], const GpuMat levels[4], Stream& stream = Stream::Null());

//! @} cudaimgproc_hist

//////////////////////////////// Canny ////////////////////////////////

/** @brief Base class for Canny Edge Detector. :
 */
class CV_EXPORTS CannyEdgeDetector : public Algorithm
{
public:
    /** @brief Finds edges in an image using the @cite Canny86 algorithm.

    @param image Single-channel 8-bit input image.
    @param edges Output edge map. It has the same size and type as image.
    @param stream Stream for the asynchronous version.
     */
    virtual void detect(InputArray image, OutputArray edges, Stream& stream = Stream::Null()) = 0;
    /** @overload
    @param dx First derivative of image in the vertical direction. Support only CV_32S type.
    @param dy First derivative of image in the horizontal direction. Support only CV_32S type.
    @param edges Output edge map. It has the same size and type as image.
    @param stream Stream for the asynchronous version.
    */
    virtual void detect(InputArray dx, InputArray dy, OutputArray edges, Stream& stream = Stream::Null()) = 0;

    virtual void setLowThreshold(double low_thresh) = 0;
    virtual double getLowThreshold() const = 0;

    virtual void setHighThreshold(double high_thresh) = 0;
    virtual double getHighThreshold() const = 0;

    virtual void setAppertureSize(int apperture_size) = 0;
    virtual int getAppertureSize() const = 0;

    virtual void setL2Gradient(bool L2gradient) = 0;
    virtual bool getL2Gradient() const = 0;
};

/** @brief Creates implementation for cuda::CannyEdgeDetector .

@param low_thresh First threshold for the hysteresis procedure.
@param high_thresh Second threshold for the hysteresis procedure.
@param apperture_size Aperture size for the Sobel operator.
@param L2gradient Flag indicating whether a more accurate \f$L_2\f$ norm
\f$=\sqrt{(dI/dx)^2 + (dI/dy)^2}\f$ should be used to compute the image gradient magnitude (
L2gradient=true ), or a faster default \f$L_1\f$ norm \f$=|dI/dx|+|dI/dy|\f$ is enough ( L2gradient=false
).
 */
CV_EXPORTS Ptr<CannyEdgeDetector> createCannyEdgeDetector(double low_thresh, double high_thresh, int apperture_size = 3, bool L2gradient = false);

/////////////////////////// Hough Transform ////////////////////////////

//////////////////////////////////////
// HoughLines

//! @addtogroup cudaimgproc_hough
//! @{

/** @brief Base class for lines detector algorithm. :
 */
class CV_EXPORTS HoughLinesDetector : public Algorithm
{
public:
    /** @brief Finds lines in a binary image using the classical Hough transform.

    @param src 8-bit, single-channel binary source image.
    @param lines Output vector of lines. Each line is represented by a two-element vector
    \f$(\rho, \theta)\f$ . \f$\rho\f$ is the distance from the coordinate origin \f$(0,0)\f$ (top-left corner of
    the image). \f$\theta\f$ is the line rotation angle in radians (
    \f$0 \sim \textrm{vertical line}, \pi/2 \sim \textrm{horizontal line}\f$ ).
    @param stream Stream for the asynchronous version.

    @sa HoughLines
     */
    virtual void detect(InputArray src, OutputArray lines, Stream& stream = Stream::Null()) = 0;

    /** @brief Downloads results from cuda::HoughLinesDetector::detect to host memory.

    @param d_lines Result of cuda::HoughLinesDetector::detect .
    @param h_lines Output host array.
    @param h_votes Optional output array for line's votes.
    @param stream Stream for the asynchronous version.
     */
    virtual void downloadResults(InputArray d_lines, OutputArray h_lines, OutputArray h_votes = noArray(), Stream& stream = Stream::Null()) = 0;

    virtual void setRho(float rho) = 0;
    virtual float getRho() const = 0;

    virtual void setTheta(float theta) = 0;
    virtual float getTheta() const = 0;

    virtual void setThreshold(int threshold) = 0;
    virtual int getThreshold() const = 0;

    virtual void setDoSort(bool doSort) = 0;
    virtual bool getDoSort() const = 0;

    virtual void setMaxLines(int maxLines) = 0;
    virtual int getMaxLines() const = 0;
};

/** @brief Creates implementation for cuda::HoughLinesDetector .

@param rho Distance resolution of the accumulator in pixels.
@param theta Angle resolution of the accumulator in radians.
@param threshold Accumulator threshold parameter. Only those lines are returned that get enough
votes ( \f$>\texttt{threshold}\f$ ).
@param doSort Performs lines sort by votes.
@param maxLines Maximum number of output lines.
 */
CV_EXPORTS Ptr<HoughLinesDetector> createHoughLinesDetector(float rho, float theta, int threshold, bool doSort = false, int maxLines = 4096);


//////////////////////////////////////
// HoughLinesP

/** @brief Base class for line segments detector algorithm. :
 */
class CV_EXPORTS HoughSegmentDetector : public Algorithm
{
public:
    /** @brief Finds line segments in a binary image using the probabilistic Hough transform.

    @param src 8-bit, single-channel binary source image.
    @param lines Output vector of lines. Each line is represented by a 4-element vector
    \f$(x_1, y_1, x_2, y_2)\f$ , where \f$(x_1,y_1)\f$ and \f$(x_2, y_2)\f$ are the ending points of each detected
    line segment.
    @param stream Stream for the asynchronous version.

    @sa HoughLinesP
     */
    virtual void detect(InputArray src, OutputArray lines, Stream& stream = Stream::Null()) = 0;

    virtual void setRho(float rho) = 0;
    virtual float getRho() const = 0;

    virtual void setTheta(float theta) = 0;
    virtual float getTheta() const = 0;

    virtual void setMinLineLength(int minLineLength) = 0;
    virtual int getMinLineLength() const = 0;

    virtual void setMaxLineGap(int maxLineGap) = 0;
    virtual int getMaxLineGap() const = 0;

    virtual void setMaxLines(int maxLines) = 0;
    virtual int getMaxLines() const = 0;
};

/** @brief Creates implementation for cuda::HoughSegmentDetector .

@param rho Distance resolution of the accumulator in pixels.
@param theta Angle resolution of the accumulator in radians.
@param minLineLength Minimum line length. Line segments shorter than that are rejected.
@param maxLineGap Maximum allowed gap between points on the same line to link them.
@param maxLines Maximum number of output lines.
 */
CV_EXPORTS Ptr<HoughSegmentDetector> createHoughSegmentDetector(float rho, float theta, int minLineLength, int maxLineGap, int maxLines = 4096);

//////////////////////////////////////
// HoughCircles

/** @brief Base class for circles detector algorithm. :
 */
class CV_EXPORTS HoughCirclesDetector : public Algorithm
{
public:
    /** @brief Finds circles in a grayscale image using the Hough transform.

    @param src 8-bit, single-channel grayscale input image.
    @param circles Output vector of found circles. Each vector is encoded as a 3-element
    floating-point vector \f$(x, y, radius)\f$ .
    @param stream Stream for the asynchronous version.

    @sa HoughCircles
     */
    virtual void detect(InputArray src, OutputArray circles, Stream& stream = Stream::Null()) = 0;

    virtual void setDp(float dp) = 0;
    virtual float getDp() const = 0;

    virtual void setMinDist(float minDist) = 0;
    virtual float getMinDist() const = 0;

    virtual void setCannyThreshold(int cannyThreshold) = 0;
    virtual int getCannyThreshold() const = 0;

    virtual void setVotesThreshold(int votesThreshold) = 0;
    virtual int getVotesThreshold() const = 0;

    virtual void setMinRadius(int minRadius) = 0;
    virtual int getMinRadius() const = 0;

    virtual void setMaxRadius(int maxRadius) = 0;
    virtual int getMaxRadius() const = 0;

    virtual void setMaxCircles(int maxCircles) = 0;
    virtual int getMaxCircles() const = 0;
};

/** @brief Creates implementation for cuda::HoughCirclesDetector .

@param dp Inverse ratio of the accumulator resolution to the image resolution. For example, if
dp=1 , the accumulator has the same resolution as the input image. If dp=2 , the accumulator has
half as big width and height.
@param minDist Minimum distance between the centers of the detected circles. If the parameter is
too small, multiple neighbor circles may be falsely detected in addition to a true one. If it is
too large, some circles may be missed.
@param cannyThreshold The higher threshold of the two passed to Canny edge detector (the lower one
is twice smaller).
@param votesThreshold The accumulator threshold for the circle centers at the detection stage. The
smaller it is, the more false circles may be detected.
@param minRadius Minimum circle radius.
@param maxRadius Maximum circle radius.
@param maxCircles Maximum number of output circles.
 */
CV_EXPORTS Ptr<HoughCirclesDetector> createHoughCirclesDetector(float dp, float minDist, int cannyThreshold, int votesThreshold, int minRadius, int maxRadius, int maxCircles = 4096);

//////////////////////////////////////
// GeneralizedHough

/** @brief Creates implementation for generalized hough transform from @cite Ballard1981 .
 */
CV_EXPORTS Ptr<GeneralizedHoughBallard> createGeneralizedHoughBallard();

/** @brief Creates implementation for generalized hough transform from @cite Guil1999 .
 */
CV_EXPORTS Ptr<GeneralizedHoughGuil> createGeneralizedHoughGuil();

//! @} cudaimgproc_hough

////////////////////////// Corners Detection ///////////////////////////

//! @addtogroup cudaimgproc_feature
//! @{

/** @brief Base class for Cornerness Criteria computation. :
 */
class CV_EXPORTS CornernessCriteria : public Algorithm
{
public:
    /** @brief Computes the cornerness criteria at each image pixel.

    @param src Source image.
    @param dst Destination image containing cornerness values. It will have the same size as src and
    CV_32FC1 type.
    @param stream Stream for the asynchronous version.
     */
    virtual void compute(InputArray src, OutputArray dst, Stream& stream = Stream::Null()) = 0;
};

/** @brief Creates implementation for Harris cornerness criteria.

@param srcType Input source type. Only CV_8UC1 and CV_32FC1 are supported for now.
@param blockSize Neighborhood size.
@param ksize Aperture parameter for the Sobel operator.
@param k Harris detector free parameter.
@param borderType Pixel extrapolation method. Only BORDER_REFLECT101 and BORDER_REPLICATE are
supported for now.

@sa cornerHarris
 */
CV_EXPORTS Ptr<CornernessCriteria> createHarrisCorner(int srcType, int blockSize, int ksize, double k, int borderType = BORDER_REFLECT101);

/** @brief Creates implementation for the minimum eigen value of a 2x2 derivative covariation matrix (the
cornerness criteria).

@param srcType Input source type. Only CV_8UC1 and CV_32FC1 are supported for now.
@param blockSize Neighborhood size.
@param ksize Aperture parameter for the Sobel operator.
@param borderType Pixel extrapolation method. Only BORDER_REFLECT101 and BORDER_REPLICATE are
supported for now.

@sa cornerMinEigenVal
 */
CV_EXPORTS Ptr<CornernessCriteria> createMinEigenValCorner(int srcType, int blockSize, int ksize, int borderType = BORDER_REFLECT101);

////////////////////////// Corners Detection ///////////////////////////

/** @brief Base class for Corners Detector. :
 */
class CV_EXPORTS CornersDetector : public Algorithm
{
public:
    /** @brief Determines strong corners on an image.

    @param image Input 8-bit or floating-point 32-bit, single-channel image.
    @param corners Output vector of detected corners (1-row matrix with CV_32FC2 type with corners
    positions).
    @param mask Optional region of interest. If the image is not empty (it needs to have the type
    CV_8UC1 and the same size as image ), it specifies the region in which the corners are detected.
    @param stream Stream for the asynchronous version.
     */
    virtual void detect(InputArray image, OutputArray corners, InputArray mask = noArray(), Stream& stream = Stream::Null()) = 0;
};

/** @brief Creates implementation for cuda::CornersDetector .

@param srcType Input source type. Only CV_8UC1 and CV_32FC1 are supported for now.
@param maxCorners Maximum number of corners to return. If there are more corners than are found,
the strongest of them is returned.
@param qualityLevel Parameter characterizing the minimal accepted quality of image corners. The
parameter value is multiplied by the best corner quality measure, which is the minimal eigenvalue
(see cornerMinEigenVal ) or the Harris function response (see cornerHarris ). The corners with the
quality measure less than the product are rejected. For example, if the best corner has the
quality measure = 1500, and the qualityLevel=0.01 , then all the corners with the quality measure
less than 15 are rejected.
@param minDistance Minimum possible Euclidean distance between the returned corners.
@param blockSize Size of an average block for computing a derivative covariation matrix over each
pixel neighborhood. See cornerEigenValsAndVecs .
@param useHarrisDetector Parameter indicating whether to use a Harris detector (see cornerHarris)
or cornerMinEigenVal.
@param harrisK Free parameter of the Harris detector.
 */
CV_EXPORTS Ptr<CornersDetector> createGoodFeaturesToTrackDetector(int srcType, int maxCorners = 1000, double qualityLevel = 0.01, double minDistance = 0.0,
                                                                  int blockSize = 3, bool useHarrisDetector = false, double harrisK = 0.04);

//! @} cudaimgproc_feature

///////////////////////////// Mean Shift //////////////////////////////

/** @brief Performs mean-shift filtering for each point of the source image.

@param src Source image. Only CV_8UC4 images are supported for now.
@param dst Destination image containing the color of mapped points. It has the same size and type
as src .
@param sp Spatial window radius.
@param sr Color window radius.
@param criteria Termination criteria. See TermCriteria.
@param stream Stream for the asynchronous version.

It maps each point of the source image into another point. As a result, you have a new color and new
position of each point.
 */
CV_EXPORTS void meanShiftFiltering(InputArray src, OutputArray dst, int sp, int sr,
                                   TermCriteria criteria = TermCriteria(TermCriteria::MAX_ITER + TermCriteria::EPS, 5, 1),
                                   Stream& stream = Stream::Null());

/** @brief Performs a mean-shift procedure and stores information about processed points (their colors and
positions) in two images.

@param src Source image. Only CV_8UC4 images are supported for now.
@param dstr Destination image containing the color of mapped points. The size and type is the same
as src .
@param dstsp Destination image containing the position of mapped points. The size is the same as
src size. The type is CV_16SC2 .
@param sp Spatial window radius.
@param sr Color window radius.
@param criteria Termination criteria. See TermCriteria.
@param stream Stream for the asynchronous version.

@sa cuda::meanShiftFiltering
 */
CV_EXPORTS void meanShiftProc(InputArray src, OutputArray dstr, OutputArray dstsp, int sp, int sr,
                              TermCriteria criteria = TermCriteria(TermCriteria::MAX_ITER + TermCriteria::EPS, 5, 1),
                              Stream& stream = Stream::Null());

/** @brief Performs a mean-shift segmentation of the source image and eliminates small segments.

@param src Source image. Only CV_8UC4 images are supported for now.
@param dst Segmented image with the same size and type as src (host memory).
@param sp Spatial window radius.
@param sr Color window radius.
@param minsize Minimum segment size. Smaller segments are merged.
@param criteria Termination criteria. See TermCriteria.
@param stream Stream for the asynchronous version.
 */
CV_EXPORTS void meanShiftSegmentation(InputArray src, OutputArray dst, int sp, int sr, int minsize,
                                      TermCriteria criteria = TermCriteria(TermCriteria::MAX_ITER + TermCriteria::EPS, 5, 1),
                                      Stream& stream = Stream::Null());

/////////////////////////// Match Template ////////////////////////////

/** @brief Base class for Template Matching. :
 */
class CV_EXPORTS TemplateMatching : public Algorithm
{
public:
    /** @brief Computes a proximity map for a raster template and an image where the template is searched for.

    @param image Source image.
    @param templ Template image with the size and type the same as image .
    @param result Map containing comparison results ( CV_32FC1 ). If image is *W x H* and templ is *w
    x h*, then result must be *W-w+1 x H-h+1*.
    @param stream Stream for the asynchronous version.
     */
    virtual void match(InputArray image, InputArray templ, OutputArray result, Stream& stream = Stream::Null()) = 0;
};

/** @brief Creates implementation for cuda::TemplateMatching .

@param srcType Input source type. CV_32F and CV_8U depth images (1..4 channels) are supported
for now.
@param method Specifies the way to compare the template with the image.
@param user_block_size You can use field user_block_size to set specific block size. If you
leave its default value Size(0,0) then automatic estimation of block size will be used (which is
optimized for speed). By varying user_block_size you can reduce memory requirements at the cost
of speed.

The following methods are supported for the CV_8U depth images for now:

-   CV_TM_SQDIFF
-   CV_TM_SQDIFF_NORMED
-   CV_TM_CCORR
-   CV_TM_CCORR_NORMED
-   CV_TM_CCOEFF
-   CV_TM_CCOEFF_NORMED

The following methods are supported for the CV_32F images for now:

-   CV_TM_SQDIFF
-   CV_TM_CCORR

@sa matchTemplate
 */
CV_EXPORTS Ptr<TemplateMatching> createTemplateMatching(int srcType, int method, Size user_block_size = Size());

////////////////////////// Bilateral Filter ///////////////////////////

/** @brief Performs bilateral filtering of passed image

@param src Source image. Supports only (channles != 2 && depth() != CV_8S && depth() != CV_32S
&& depth() != CV_64F).
@param dst Destination imagwe.
@param kernel_size Kernel window size.
@param sigma_color Filter sigma in the color space.
@param sigma_spatial Filter sigma in the coordinate space.
@param borderMode Border type. See borderInterpolate for details. BORDER_REFLECT101 ,
BORDER_REPLICATE , BORDER_CONSTANT , BORDER_REFLECT and BORDER_WRAP are supported for now.
@param stream Stream for the asynchronous version.

@sa bilateralFilter
 */
CV_EXPORTS void bilateralFilter(InputArray src, OutputArray dst, int kernel_size, float sigma_color, float sigma_spatial,
                                int borderMode = BORDER_DEFAULT, Stream& stream = Stream::Null());

///////////////////////////// Blending ////////////////////////////////

/** @brief Performs linear blending of two images.

@param img1 First image. Supports only CV_8U and CV_32F depth.
@param img2 Second image. Must have the same size and the same type as img1 .
@param weights1 Weights for first image. Must have tha same size as img1 . Supports only CV_32F
type.
@param weights2 Weights for second image. Must have tha same size as img2 . Supports only CV_32F
type.
@param result Destination image.
@param stream Stream for the asynchronous version.
 */
CV_EXPORTS void blendLinear(InputArray img1, InputArray img2, InputArray weights1, InputArray weights2,
                            OutputArray result, Stream& stream = Stream::Null());

//! @}

}} // namespace cv { namespace cuda {

a  
Kai Westerkamp committed
728
#endif /* __OPENCV_CUDAIMGPROC_HPP__ */