perf_matchers.cpp 9.75 KB
Newer Older
wester committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
#include "perf_precomp.hpp"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/opencv_modules.hpp"
#include "opencv2/flann.hpp"

using namespace std;
using namespace cv;
using namespace perf;
using std::tr1::make_tuple;
using std::tr1::get;

typedef TestBaseWithParam<size_t> FeaturesFinderVec;
typedef TestBaseWithParam<string> match;
typedef std::tr1::tuple<string, int> matchVector_t;
typedef TestBaseWithParam<matchVector_t> matchVector;

#define NUMBER_IMAGES testing::Values(1, 5, 20)
#define SURF_MATCH_CONFIDENCE 0.65f
#define ORB_MATCH_CONFIDENCE  0.3f
#define WORK_MEGAPIX 0.6

#ifdef HAVE_OPENCV_XFEATURES2D
#define TEST_DETECTORS testing::Values("surf", "orb")
#else
#define TEST_DETECTORS testing::Values<string>("orb")
#endif

PERF_TEST_P(FeaturesFinderVec, ParallelFeaturesFinder, NUMBER_IMAGES)
{
    Mat img = imread( getDataPath("stitching/a1.png") );
    vector<Mat> imgs(GetParam(), img);
    vector<detail::ImageFeatures> features(imgs.size());

    Ptr<detail::FeaturesFinder> featuresFinder = makePtr<detail::OrbFeaturesFinder>();

    TEST_CYCLE()
    {
        (*featuresFinder)(imgs, features);
    }

    SANITY_CHECK_NOTHING();
}

PERF_TEST_P(FeaturesFinderVec, SerialFeaturesFinder, NUMBER_IMAGES)
{
    Mat img = imread( getDataPath("stitching/a1.png") );
    vector<Mat> imgs(GetParam(), img);
    vector<detail::ImageFeatures> features(imgs.size());

    Ptr<detail::FeaturesFinder> featuresFinder = makePtr<detail::OrbFeaturesFinder>();

    TEST_CYCLE()
    {
        for (size_t i = 0; i < imgs.size(); ++i)
            (*featuresFinder)(imgs[i], features[i]);
    }

    SANITY_CHECK_NOTHING();
}

PERF_TEST_P( match, bestOf2Nearest, TEST_DETECTORS)
{
    Mat img1, img1_full = imread( getDataPath("stitching/boat1.jpg") );
    Mat img2, img2_full = imread( getDataPath("stitching/boat2.jpg") );
    float scale1 = (float)std::min(1.0, sqrt(WORK_MEGAPIX * 1e6 / img1_full.total()));
    float scale2 = (float)std::min(1.0, sqrt(WORK_MEGAPIX * 1e6 / img2_full.total()));
    resize(img1_full, img1, Size(), scale1, scale1);
    resize(img2_full, img2, Size(), scale2, scale2);

    Ptr<detail::FeaturesFinder> finder;
    Ptr<detail::FeaturesMatcher> matcher;
    if (GetParam() == "surf")
    {
        finder = makePtr<detail::SurfFeaturesFinder>();
        matcher = makePtr<detail::BestOf2NearestMatcher>(false, SURF_MATCH_CONFIDENCE);
    }
    else if (GetParam() == "orb")
    {
        finder = makePtr<detail::OrbFeaturesFinder>();
        matcher = makePtr<detail::BestOf2NearestMatcher>(false, ORB_MATCH_CONFIDENCE);
    }
    else
    {
        FAIL() << "Unknown 2D features type: " << GetParam();
    }

    detail::ImageFeatures features1, features2;
    (*finder)(img1, features1);
    (*finder)(img2, features2);

    detail::MatchesInfo pairwise_matches;

    declare.in(features1.descriptors, features2.descriptors);

    while(next())
    {
        cvflann::seed_random(42);//for predictive FlannBasedMatcher
        startTimer();
        (*matcher)(features1, features2, pairwise_matches);
        stopTimer();
        matcher->collectGarbage();
    }

    Mat dist (pairwise_matches.H, Range::all(), Range(2, 3));
    Mat R (pairwise_matches.H, Range::all(), Range(0, 2));
    // separate transform matrix, use lower error on rotations
    SANITY_CHECK(dist, 1., ERROR_ABSOLUTE);
    SANITY_CHECK(R, .015, ERROR_ABSOLUTE);
}

PERF_TEST_P( matchVector, bestOf2NearestVectorFeatures, testing::Combine(
                 TEST_DETECTORS,
                 testing::Values(2, 4, 8))
             )
{
    Mat img1, img1_full = imread( getDataPath("stitching/boat1.jpg") );
    Mat img2, img2_full = imread( getDataPath("stitching/boat2.jpg") );
    float scale1 = (float)std::min(1.0, sqrt(WORK_MEGAPIX * 1e6 / img1_full.total()));
    float scale2 = (float)std::min(1.0, sqrt(WORK_MEGAPIX * 1e6 / img2_full.total()));
    resize(img1_full, img1, Size(), scale1, scale1);
    resize(img2_full, img2, Size(), scale2, scale2);

    Ptr<detail::FeaturesFinder> finder;
    Ptr<detail::FeaturesMatcher> matcher;
    string detectorName = get<0>(GetParam());
    int featuresVectorSize = get<1>(GetParam());
    if (detectorName == "surf")
    {
        finder = makePtr<detail::SurfFeaturesFinder>();
        matcher = makePtr<detail::BestOf2NearestMatcher>(false, SURF_MATCH_CONFIDENCE);
    }
    else if (detectorName == "orb")
    {
        finder = makePtr<detail::OrbFeaturesFinder>();
        matcher = makePtr<detail::BestOf2NearestMatcher>(false, ORB_MATCH_CONFIDENCE);
    }
    else
    {
        FAIL() << "Unknown 2D features type: " << get<0>(GetParam());
    }

    detail::ImageFeatures features1, features2;
    (*finder)(img1, features1);
    (*finder)(img2, features2);
    vector<detail::ImageFeatures> features;
    vector<detail::MatchesInfo> pairwise_matches;
    for(int i = 0; i < featuresVectorSize/2; i++)
    {
        features.push_back(features1);
        features.push_back(features2);
    }

    declare.time(200);
    while(next())
    {
        cvflann::seed_random(42);//for predictive FlannBasedMatcher
        startTimer();
        (*matcher)(features, pairwise_matches);
        stopTimer();
        matcher->collectGarbage();
    }

    size_t matches_count = 0;
    for (size_t i = 0; i < pairwise_matches.size(); ++i)
    {
        if (pairwise_matches[i].src_img_idx < 0)
            continue;

        EXPECT_TRUE(pairwise_matches[i].matches.size() > 100);
        EXPECT_FALSE(pairwise_matches[i].H.empty());
        ++matches_count;
    }

    EXPECT_TRUE(matches_count > 0);

    SANITY_CHECK_NOTHING();
}

PERF_TEST_P( match, affineBestOf2Nearest, TEST_DETECTORS)
{
    Mat img1, img1_full = imread( getDataPath("stitching/s1.jpg") );
    Mat img2, img2_full = imread( getDataPath("stitching/s2.jpg") );
    float scale1 = (float)std::min(1.0, sqrt(WORK_MEGAPIX * 1e6 / img1_full.total()));
    float scale2 = (float)std::min(1.0, sqrt(WORK_MEGAPIX * 1e6 / img2_full.total()));
    resize(img1_full, img1, Size(), scale1, scale1);
    resize(img2_full, img2, Size(), scale2, scale2);

    Ptr<detail::FeaturesFinder> finder;
    Ptr<detail::FeaturesMatcher> matcher;
    if (GetParam() == "surf")
    {
        finder = makePtr<detail::SurfFeaturesFinder>();
        matcher = makePtr<detail::AffineBestOf2NearestMatcher>(false, false, SURF_MATCH_CONFIDENCE);
    }
    else if (GetParam() == "orb")
    {
        finder = makePtr<detail::OrbFeaturesFinder>();
        matcher = makePtr<detail::AffineBestOf2NearestMatcher>(false, false, ORB_MATCH_CONFIDENCE);
    }
    else
    {
        FAIL() << "Unknown 2D features type: " << GetParam();
    }

    detail::ImageFeatures features1, features2;
    (*finder)(img1, features1);
    (*finder)(img2, features2);

    detail::MatchesInfo pairwise_matches;

    declare.in(features1.descriptors, features2.descriptors);

    while(next())
    {
        cvflann::seed_random(42);//for predictive FlannBasedMatcher
        startTimer();
        (*matcher)(features1, features2, pairwise_matches);
        stopTimer();
        matcher->collectGarbage();
    }

    // separate rotation and translation in transform matrix
    Mat T (pairwise_matches.H, Range(0, 2), Range(2, 3));
    Mat R (pairwise_matches.H, Range(0, 2), Range(0, 2));
    Mat h (pairwise_matches.H, Range(2, 3), Range::all());
    SANITY_CHECK(T, 5, ERROR_ABSOLUTE); // allow 5 pixels diff in translations
    SANITY_CHECK(R, .01, ERROR_ABSOLUTE); // rotations must be more precise
    // last row should be precisely (0, 0, 1) as it is just added for representation in homogeneous
    // coordinates
    EXPECT_DOUBLE_EQ(h.at<double>(0), 0.);
    EXPECT_DOUBLE_EQ(h.at<double>(1), 0.);
    EXPECT_DOUBLE_EQ(h.at<double>(2), 1.);
}

PERF_TEST_P( matchVector, affineBestOf2NearestVectorFeatures, testing::Combine(
                 TEST_DETECTORS,
                 testing::Values(2, 4, 8))
             )
{
    Mat img1, img1_full = imread( getDataPath("stitching/s1.jpg") );
    Mat img2, img2_full = imread( getDataPath("stitching/s2.jpg") );
    float scale1 = (float)std::min(1.0, sqrt(WORK_MEGAPIX * 1e6 / img1_full.total()));
    float scale2 = (float)std::min(1.0, sqrt(WORK_MEGAPIX * 1e6 / img2_full.total()));
    resize(img1_full, img1, Size(), scale1, scale1);
    resize(img2_full, img2, Size(), scale2, scale2);

    Ptr<detail::FeaturesFinder> finder;
    Ptr<detail::FeaturesMatcher> matcher;
    string detectorName = get<0>(GetParam());
    int featuresVectorSize = get<1>(GetParam());
    if (detectorName == "surf")
    {
        finder = makePtr<detail::SurfFeaturesFinder>();
        matcher = makePtr<detail::AffineBestOf2NearestMatcher>(false, false, SURF_MATCH_CONFIDENCE);
    }
    else if (detectorName == "orb")
    {
        finder = makePtr<detail::OrbFeaturesFinder>();
        matcher = makePtr<detail::AffineBestOf2NearestMatcher>(false, false, ORB_MATCH_CONFIDENCE);
    }
    else
    {
        FAIL() << "Unknown 2D features type: " << get<0>(GetParam());
    }

    detail::ImageFeatures features1, features2;
    (*finder)(img1, features1);
    (*finder)(img2, features2);
    vector<detail::ImageFeatures> features;
    vector<detail::MatchesInfo> pairwise_matches;
    for(int i = 0; i < featuresVectorSize/2; i++)
    {
        features.push_back(features1);
        features.push_back(features2);
    }

    declare.time(200);
    while(next())
    {
        cvflann::seed_random(42);//for predictive FlannBasedMatcher
        startTimer();
        (*matcher)(features, pairwise_matches);
        stopTimer();
        matcher->collectGarbage();
    }

    size_t matches_count = 0;
    for (size_t i = 0; i < pairwise_matches.size(); ++i)
    {
        if (pairwise_matches[i].src_img_idx < 0)
            continue;

        EXPECT_TRUE(pairwise_matches[i].matches.size() > 400);
        EXPECT_FALSE(pairwise_matches[i].H.empty());
        ++matches_count;
    }

    EXPECT_TRUE(matches_count > 0);

    SANITY_CHECK_NOTHING();
}