transformations.py 56.4 KB
Newer Older
wester committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707
#!/usr/bin/env python

# -*- coding: utf-8 -*-
# transformations.py

# Copyright (c) 2006, Christoph Gohlke
# Copyright (c) 2006-2009, The Regents of the University of California
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# * Redistributions of source code must retain the above copyright
#   notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright
#   notice, this list of conditions and the following disclaimer in the
#   documentation and/or other materials provided with the distribution.
# * Neither the name of the copyright holders nor the names of any
#   contributors may be used to endorse or promote products derived
#   from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
# CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
# SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
# CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.

"""Homogeneous Transformation Matrices and Quaternions.

A library for calculating 4x4 matrices for translating, rotating, reflecting,
scaling, shearing, projecting, orthogonalizing, and superimposing arrays of
3D homogeneous coordinates as well as for converting between rotation matrices,
Euler angles, and quaternions. Also includes an Arcball control object and
functions to decompose transformation matrices.

:Authors:
  `Christoph Gohlke <http://www.lfd.uci.edu/~gohlke/>`__,
  Laboratory for Fluorescence Dynamics, University of California, Irvine

:Version: 20090418

Requirements
------------

* `Python 2.6 <http://www.python.org>`__
* `Numpy 1.3 <http://numpy.scipy.org>`__
* `transformations.c 20090418 <http://www.lfd.uci.edu/~gohlke/>`__
  (optional implementation of some functions in C)

Notes
-----

Matrices (M) can be inverted using numpy.linalg.inv(M), concatenated using
numpy.dot(M0, M1), or used to transform homogeneous coordinates (v) using
numpy.dot(M, v) for shape (4, \*) "point of arrays", respectively
numpy.dot(v, M.T) for shape (\*, 4) "array of points".

Calculations are carried out with numpy.float64 precision.

This Python implementation is not optimized for speed.

Vector, point, quaternion, and matrix function arguments are expected to be
"array like", i.e. tuple, list, or numpy arrays.

Return types are numpy arrays unless specified otherwise.

Angles are in radians unless specified otherwise.

Quaternions ix+jy+kz+w are represented as [x, y, z, w].

Use the transpose of transformation matrices for OpenGL glMultMatrixd().

A triple of Euler angles can be applied/interpreted in 24 ways, which can
be specified using a 4 character string or encoded 4-tuple:

  *Axes 4-string*: e.g. 'sxyz' or 'ryxy'

  - first character : rotations are applied to 's'tatic or 'r'otating frame
  - remaining characters : successive rotation axis 'x', 'y', or 'z'

  *Axes 4-tuple*: e.g. (0, 0, 0, 0) or (1, 1, 1, 1)

  - inner axis: code of axis ('x':0, 'y':1, 'z':2) of rightmost matrix.
  - parity : even (0) if inner axis 'x' is followed by 'y', 'y' is followed
    by 'z', or 'z' is followed by 'x'. Otherwise odd (1).
  - repetition : first and last axis are same (1) or different (0).
  - frame : rotations are applied to static (0) or rotating (1) frame.

References
----------

(1)  Matrices and transformations. Ronald Goldman.
     In "Graphics Gems I", pp 472-475. Morgan Kaufmann, 1990.
(2)  More matrices and transformations: shear and pseudo-perspective.
     Ronald Goldman. In "Graphics Gems II", pp 320-323. Morgan Kaufmann, 1991.
(3)  Decomposing a matrix into simple transformations. Spencer Thomas.
     In "Graphics Gems II", pp 320-323. Morgan Kaufmann, 1991.
(4)  Recovering the data from the transformation matrix. Ronald Goldman.
     In "Graphics Gems II", pp 324-331. Morgan Kaufmann, 1991.
(5)  Euler angle conversion. Ken Shoemake.
     In "Graphics Gems IV", pp 222-229. Morgan Kaufmann, 1994.
(6)  Arcball rotation control. Ken Shoemake.
     In "Graphics Gems IV", pp 175-192. Morgan Kaufmann, 1994.
(7)  Representing attitude: Euler angles, unit quaternions, and rotation
     vectors. James Diebel. 2006.
(8)  A discussion of the solution for the best rotation to relate two sets
     of vectors. W Kabsch. Acta Cryst. 1978. A34, 827-828.
(9)  Closed-form solution of absolute orientation using unit quaternions.
     BKP Horn. J Opt Soc Am A. 1987. 4(4), 629-642.
(10) Quaternions. Ken Shoemake.
     http://www.sfu.ca/~jwa3/cmpt461/files/quatut.pdf
(11) From quaternion to matrix and back. JMP van Waveren. 2005.
     http://www.intel.com/cd/ids/developer/asmo-na/eng/293748.htm
(12) Uniform random rotations. Ken Shoemake.
     In "Graphics Gems III", pp 124-132. Morgan Kaufmann, 1992.


Examples
--------

>>> alpha, beta, gamma = 0.123, -1.234, 2.345
>>> origin, xaxis, yaxis, zaxis = (0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1)
>>> I = identity_matrix()
>>> Rx = rotation_matrix(alpha, xaxis)
>>> Ry = rotation_matrix(beta, yaxis)
>>> Rz = rotation_matrix(gamma, zaxis)
>>> R = concatenate_matrices(Rx, Ry, Rz)
>>> euler = euler_from_matrix(R, 'rxyz')
>>> numpy.allclose([alpha, beta, gamma], euler)
True
>>> Re = euler_matrix(alpha, beta, gamma, 'rxyz')
>>> is_same_transform(R, Re)
True
>>> al, be, ga = euler_from_matrix(Re, 'rxyz')
>>> is_same_transform(Re, euler_matrix(al, be, ga, 'rxyz'))
True
>>> qx = quaternion_about_axis(alpha, xaxis)
>>> qy = quaternion_about_axis(beta, yaxis)
>>> qz = quaternion_about_axis(gamma, zaxis)
>>> q = quaternion_multiply(qx, qy)
>>> q = quaternion_multiply(q, qz)
>>> Rq = quaternion_matrix(q)
>>> is_same_transform(R, Rq)
True
>>> S = scale_matrix(1.23, origin)
>>> T = translation_matrix((1, 2, 3))
>>> Z = shear_matrix(beta, xaxis, origin, zaxis)
>>> R = random_rotation_matrix(numpy.random.rand(3))
>>> M = concatenate_matrices(T, R, Z, S)
>>> scale, shear, angles, trans, persp = decompose_matrix(M)
>>> numpy.allclose(scale, 1.23)
True
>>> numpy.allclose(trans, (1, 2, 3))
True
>>> numpy.allclose(shear, (0, math.tan(beta), 0))
True
>>> is_same_transform(R, euler_matrix(axes='sxyz', *angles))
True
>>> M1 = compose_matrix(scale, shear, angles, trans, persp)
>>> is_same_transform(M, M1)
True

"""

from __future__ import division

import warnings
import math

import numpy

# Documentation in HTML format can be generated with Epydoc
__docformat__ = "restructuredtext en"


def identity_matrix():
    """Return 4x4 identity/unit matrix.

    >>> I = identity_matrix()
    >>> numpy.allclose(I, numpy.dot(I, I))
    True
    >>> numpy.sum(I), numpy.trace(I)
    (4.0, 4.0)
    >>> numpy.allclose(I, numpy.identity(4, dtype=numpy.float64))
    True

    """
    return numpy.identity(4, dtype=numpy.float64)


def translation_matrix(direction):
    """Return matrix to translate by direction vector.

    >>> v = numpy.random.random(3) - 0.5
    >>> numpy.allclose(v, translation_matrix(v)[:3, 3])
    True

    """
    M = numpy.identity(4)
    M[:3, 3] = direction[:3]
    return M


def translation_from_matrix(matrix):
    """Return translation vector from translation matrix.

    >>> v0 = numpy.random.random(3) - 0.5
    >>> v1 = translation_from_matrix(translation_matrix(v0))
    >>> numpy.allclose(v0, v1)
    True

    """
    return numpy.array(matrix, copy=False)[:3, 3].copy()


def reflection_matrix(point, normal):
    """Return matrix to mirror at plane defined by point and normal vector.

    >>> v0 = numpy.random.random(4) - 0.5
    >>> v0[3] = 1.0
    >>> v1 = numpy.random.random(3) - 0.5
    >>> R = reflection_matrix(v0, v1)
    >>> numpy.allclose(2., numpy.trace(R))
    True
    >>> numpy.allclose(v0, numpy.dot(R, v0))
    True
    >>> v2 = v0.copy()
    >>> v2[:3] += v1
    >>> v3 = v0.copy()
    >>> v2[:3] -= v1
    >>> numpy.allclose(v2, numpy.dot(R, v3))
    True

    """
    normal = unit_vector(normal[:3])
    M = numpy.identity(4)
    M[:3, :3] -= 2.0 * numpy.outer(normal, normal)
    M[:3, 3] = (2.0 * numpy.dot(point[:3], normal)) * normal
    return M


def reflection_from_matrix(matrix):
    """Return mirror plane point and normal vector from reflection matrix.

    >>> v0 = numpy.random.random(3) - 0.5
    >>> v1 = numpy.random.random(3) - 0.5
    >>> M0 = reflection_matrix(v0, v1)
    >>> point, normal = reflection_from_matrix(M0)
    >>> M1 = reflection_matrix(point, normal)
    >>> is_same_transform(M0, M1)
    True

    """
    M = numpy.array(matrix, dtype=numpy.float64, copy=False)
    # normal: unit eigenvector corresponding to eigenvalue -1
    l, V = numpy.linalg.eig(M[:3, :3])
    i = numpy.where(abs(numpy.real(l) + 1.0) < 1e-8)[0]
    if not len(i):
        raise ValueError("no unit eigenvector corresponding to eigenvalue -1")
    normal = numpy.real(V[:, i[0]]).squeeze()
    # point: any unit eigenvector corresponding to eigenvalue 1
    l, V = numpy.linalg.eig(M)
    i = numpy.where(abs(numpy.real(l) - 1.0) < 1e-8)[0]
    if not len(i):
        raise ValueError("no unit eigenvector corresponding to eigenvalue 1")
    point = numpy.real(V[:, i[-1]]).squeeze()
    point /= point[3]
    return point, normal


def rotation_matrix(angle, direction, point=None):
    """Return matrix to rotate about axis defined by point and direction.

    >>> angle = (random.random() - 0.5) * (2*math.pi)
    >>> direc = numpy.random.random(3) - 0.5
    >>> point = numpy.random.random(3) - 0.5
    >>> R0 = rotation_matrix(angle, direc, point)
    >>> R1 = rotation_matrix(angle-2*math.pi, direc, point)
    >>> is_same_transform(R0, R1)
    True
    >>> R0 = rotation_matrix(angle, direc, point)
    >>> R1 = rotation_matrix(-angle, -direc, point)
    >>> is_same_transform(R0, R1)
    True
    >>> I = numpy.identity(4, numpy.float64)
    >>> numpy.allclose(I, rotation_matrix(math.pi*2, direc))
    True
    >>> numpy.allclose(2., numpy.trace(rotation_matrix(math.pi/2,
    ...                                                direc, point)))
    True

    """
    sina = math.sin(angle)
    cosa = math.cos(angle)
    direction = unit_vector(direction[:3])
    # rotation matrix around unit vector
    R = numpy.array(((cosa, 0.0,  0.0),
                     (0.0,  cosa, 0.0),
                     (0.0,  0.0,  cosa)), dtype=numpy.float64)
    R += numpy.outer(direction, direction) * (1.0 - cosa)
    direction *= sina
    R += numpy.array((( 0.0,         -direction[2],  direction[1]),
                      ( direction[2], 0.0,          -direction[0]),
                      (-direction[1], direction[0],  0.0)),
                     dtype=numpy.float64)
    M = numpy.identity(4)
    M[:3, :3] = R
    if point is not None:
        # rotation not around origin
        point = numpy.array(point[:3], dtype=numpy.float64, copy=False)
        M[:3, 3] = point - numpy.dot(R, point)
    return M


def rotation_from_matrix(matrix):
    """Return rotation angle and axis from rotation matrix.

    >>> angle = (random.random() - 0.5) * (2*math.pi)
    >>> direc = numpy.random.random(3) - 0.5
    >>> point = numpy.random.random(3) - 0.5
    >>> R0 = rotation_matrix(angle, direc, point)
    >>> angle, direc, point = rotation_from_matrix(R0)
    >>> R1 = rotation_matrix(angle, direc, point)
    >>> is_same_transform(R0, R1)
    True

    """
    R = numpy.array(matrix, dtype=numpy.float64, copy=False)
    R33 = R[:3, :3]
    # direction: unit eigenvector of R33 corresponding to eigenvalue of 1
    l, W = numpy.linalg.eig(R33.T)
    i = numpy.where(abs(numpy.real(l) - 1.0) < 1e-8)[0]
    if not len(i):
        raise ValueError("no unit eigenvector corresponding to eigenvalue 1")
    direction = numpy.real(W[:, i[-1]]).squeeze()
    # point: unit eigenvector of R33 corresponding to eigenvalue of 1
    l, Q = numpy.linalg.eig(R)
    i = numpy.where(abs(numpy.real(l) - 1.0) < 1e-8)[0]
    if not len(i):
        raise ValueError("no unit eigenvector corresponding to eigenvalue 1")
    point = numpy.real(Q[:, i[-1]]).squeeze()
    point /= point[3]
    # rotation angle depending on direction
    cosa = (numpy.trace(R33) - 1.0) / 2.0
    if abs(direction[2]) > 1e-8:
        sina = (R[1, 0] + (cosa-1.0)*direction[0]*direction[1]) / direction[2]
    elif abs(direction[1]) > 1e-8:
        sina = (R[0, 2] + (cosa-1.0)*direction[0]*direction[2]) / direction[1]
    else:
        sina = (R[2, 1] + (cosa-1.0)*direction[1]*direction[2]) / direction[0]
    angle = math.atan2(sina, cosa)
    return angle, direction, point


def scale_matrix(factor, origin=None, direction=None):
    """Return matrix to scale by factor around origin in direction.

    Use factor -1 for point symmetry.

    >>> v = (numpy.random.rand(4, 5) - 0.5) * 20.0
    >>> v[3] = 1.0
    >>> S = scale_matrix(-1.234)
    >>> numpy.allclose(numpy.dot(S, v)[:3], -1.234*v[:3])
    True
    >>> factor = random.random() * 10 - 5
    >>> origin = numpy.random.random(3) - 0.5
    >>> direct = numpy.random.random(3) - 0.5
    >>> S = scale_matrix(factor, origin)
    >>> S = scale_matrix(factor, origin, direct)

    """
    if direction is None:
        # uniform scaling
        M = numpy.array(((factor, 0.0,    0.0,    0.0),
                         (0.0,    factor, 0.0,    0.0),
                         (0.0,    0.0,    factor, 0.0),
                         (0.0,    0.0,    0.0,    1.0)), dtype=numpy.float64)
        if origin is not None:
            M[:3, 3] = origin[:3]
            M[:3, 3] *= 1.0 - factor
    else:
        # nonuniform scaling
        direction = unit_vector(direction[:3])
        factor = 1.0 - factor
        M = numpy.identity(4)
        M[:3, :3] -= factor * numpy.outer(direction, direction)
        if origin is not None:
            M[:3, 3] = (factor * numpy.dot(origin[:3], direction)) * direction
    return M


def scale_from_matrix(matrix):
    """Return scaling factor, origin and direction from scaling matrix.

    >>> factor = random.random() * 10 - 5
    >>> origin = numpy.random.random(3) - 0.5
    >>> direct = numpy.random.random(3) - 0.5
    >>> S0 = scale_matrix(factor, origin)
    >>> factor, origin, direction = scale_from_matrix(S0)
    >>> S1 = scale_matrix(factor, origin, direction)
    >>> is_same_transform(S0, S1)
    True
    >>> S0 = scale_matrix(factor, origin, direct)
    >>> factor, origin, direction = scale_from_matrix(S0)
    >>> S1 = scale_matrix(factor, origin, direction)
    >>> is_same_transform(S0, S1)
    True

    """
    M = numpy.array(matrix, dtype=numpy.float64, copy=False)
    M33 = M[:3, :3]
    factor = numpy.trace(M33) - 2.0
    try:
        # direction: unit eigenvector corresponding to eigenvalue factor
        l, V = numpy.linalg.eig(M33)
        i = numpy.where(abs(numpy.real(l) - factor) < 1e-8)[0][0]
        direction = numpy.real(V[:, i]).squeeze()
        direction /= vector_norm(direction)
    except IndexError:
        # uniform scaling
        factor = (factor + 2.0) / 3.0
        direction = None
    # origin: any eigenvector corresponding to eigenvalue 1
    l, V = numpy.linalg.eig(M)
    i = numpy.where(abs(numpy.real(l) - 1.0) < 1e-8)[0]
    if not len(i):
        raise ValueError("no eigenvector corresponding to eigenvalue 1")
    origin = numpy.real(V[:, i[-1]]).squeeze()
    origin /= origin[3]
    return factor, origin, direction


def projection_matrix(point, normal, direction=None,
                      perspective=None, pseudo=False):
    """Return matrix to project onto plane defined by point and normal.

    Using either perspective point, projection direction, or none of both.

    If pseudo is True, perspective projections will preserve relative depth
    such that Perspective = dot(Orthogonal, PseudoPerspective).

    >>> P = projection_matrix((0, 0, 0), (1, 0, 0))
    >>> numpy.allclose(P[1:, 1:], numpy.identity(4)[1:, 1:])
    True
    >>> point = numpy.random.random(3) - 0.5
    >>> normal = numpy.random.random(3) - 0.5
    >>> direct = numpy.random.random(3) - 0.5
    >>> persp = numpy.random.random(3) - 0.5
    >>> P0 = projection_matrix(point, normal)
    >>> P1 = projection_matrix(point, normal, direction=direct)
    >>> P2 = projection_matrix(point, normal, perspective=persp)
    >>> P3 = projection_matrix(point, normal, perspective=persp, pseudo=True)
    >>> is_same_transform(P2, numpy.dot(P0, P3))
    True
    >>> P = projection_matrix((3, 0, 0), (1, 1, 0), (1, 0, 0))
    >>> v0 = (numpy.random.rand(4, 5) - 0.5) * 20.0
    >>> v0[3] = 1.0
    >>> v1 = numpy.dot(P, v0)
    >>> numpy.allclose(v1[1], v0[1])
    True
    >>> numpy.allclose(v1[0], 3.0-v1[1])
    True

    """
    M = numpy.identity(4)
    point = numpy.array(point[:3], dtype=numpy.float64, copy=False)
    normal = unit_vector(normal[:3])
    if perspective is not None:
        # perspective projection
        perspective = numpy.array(perspective[:3], dtype=numpy.float64,
                                  copy=False)
        M[0, 0] = M[1, 1] = M[2, 2] = numpy.dot(perspective-point, normal)
        M[:3, :3] -= numpy.outer(perspective, normal)
        if pseudo:
            # preserve relative depth
            M[:3, :3] -= numpy.outer(normal, normal)
            M[:3, 3] = numpy.dot(point, normal) * (perspective+normal)
        else:
            M[:3, 3] = numpy.dot(point, normal) * perspective
        M[3, :3] = -normal
        M[3, 3] = numpy.dot(perspective, normal)
    elif direction is not None:
        # parallel projection
        direction = numpy.array(direction[:3], dtype=numpy.float64, copy=False)
        scale = numpy.dot(direction, normal)
        M[:3, :3] -= numpy.outer(direction, normal) / scale
        M[:3, 3] = direction * (numpy.dot(point, normal) / scale)
    else:
        # orthogonal projection
        M[:3, :3] -= numpy.outer(normal, normal)
        M[:3, 3] = numpy.dot(point, normal) * normal
    return M


def projection_from_matrix(matrix, pseudo=False):
    """Return projection plane and perspective point from projection matrix.

    Return values are same as arguments for projection_matrix function:
    point, normal, direction, perspective, and pseudo.

    >>> point = numpy.random.random(3) - 0.5
    >>> normal = numpy.random.random(3) - 0.5
    >>> direct = numpy.random.random(3) - 0.5
    >>> persp = numpy.random.random(3) - 0.5
    >>> P0 = projection_matrix(point, normal)
    >>> result = projection_from_matrix(P0)
    >>> P1 = projection_matrix(*result)
    >>> is_same_transform(P0, P1)
    True
    >>> P0 = projection_matrix(point, normal, direct)
    >>> result = projection_from_matrix(P0)
    >>> P1 = projection_matrix(*result)
    >>> is_same_transform(P0, P1)
    True
    >>> P0 = projection_matrix(point, normal, perspective=persp, pseudo=False)
    >>> result = projection_from_matrix(P0, pseudo=False)
    >>> P1 = projection_matrix(*result)
    >>> is_same_transform(P0, P1)
    True
    >>> P0 = projection_matrix(point, normal, perspective=persp, pseudo=True)
    >>> result = projection_from_matrix(P0, pseudo=True)
    >>> P1 = projection_matrix(*result)
    >>> is_same_transform(P0, P1)
    True

    """
    M = numpy.array(matrix, dtype=numpy.float64, copy=False)
    M33 = M[:3, :3]
    l, V = numpy.linalg.eig(M)
    i = numpy.where(abs(numpy.real(l) - 1.0) < 1e-8)[0]
    if not pseudo and len(i):
        # point: any eigenvector corresponding to eigenvalue 1
        point = numpy.real(V[:, i[-1]]).squeeze()
        point /= point[3]
        # direction: unit eigenvector corresponding to eigenvalue 0
        l, V = numpy.linalg.eig(M33)
        i = numpy.where(abs(numpy.real(l)) < 1e-8)[0]
        if not len(i):
            raise ValueError("no eigenvector corresponding to eigenvalue 0")
        direction = numpy.real(V[:, i[0]]).squeeze()
        direction /= vector_norm(direction)
        # normal: unit eigenvector of M33.T corresponding to eigenvalue 0
        l, V = numpy.linalg.eig(M33.T)
        i = numpy.where(abs(numpy.real(l)) < 1e-8)[0]
        if len(i):
            # parallel projection
            normal = numpy.real(V[:, i[0]]).squeeze()
            normal /= vector_norm(normal)
            return point, normal, direction, None, False
        else:
            # orthogonal projection, where normal equals direction vector
            return point, direction, None, None, False
    else:
        # perspective projection
        i = numpy.where(abs(numpy.real(l)) > 1e-8)[0]
        if not len(i):
            raise ValueError(
                "no eigenvector not corresponding to eigenvalue 0")
        point = numpy.real(V[:, i[-1]]).squeeze()
        point /= point[3]
        normal = - M[3, :3]
        perspective = M[:3, 3] / numpy.dot(point[:3], normal)
        if pseudo:
            perspective -= normal
        return point, normal, None, perspective, pseudo


def clip_matrix(left, right, bottom, top, near, far, perspective=False):
    """Return matrix to obtain normalized device coordinates from frustrum.

    The frustrum bounds are axis-aligned along x (left, right),
    y (bottom, top) and z (near, far).

    Normalized device coordinates are in range [-1, 1] if coordinates are
    inside the frustrum.

    If perspective is True the frustrum is a truncated pyramid with the
    perspective point at origin and direction along z axis, otherwise an
    orthographic canonical view volume (a box).

    Homogeneous coordinates transformed by the perspective clip matrix
    need to be dehomogenized (devided by w coordinate).

    >>> frustrum = numpy.random.rand(6)
    >>> frustrum[1] += frustrum[0]
    >>> frustrum[3] += frustrum[2]
    >>> frustrum[5] += frustrum[4]
    >>> M = clip_matrix(*frustrum, perspective=False)
    >>> numpy.dot(M, [frustrum[0], frustrum[2], frustrum[4], 1.0])
    array([-1., -1., -1.,  1.])
    >>> numpy.dot(M, [frustrum[1], frustrum[3], frustrum[5], 1.0])
    array([ 1.,  1.,  1.,  1.])
    >>> M = clip_matrix(*frustrum, perspective=True)
    >>> v = numpy.dot(M, [frustrum[0], frustrum[2], frustrum[4], 1.0])
    >>> v / v[3]
    array([-1., -1., -1.,  1.])
    >>> v = numpy.dot(M, [frustrum[1], frustrum[3], frustrum[4], 1.0])
    >>> v / v[3]
    array([ 1.,  1., -1.,  1.])

    """
    if left >= right or bottom >= top or near >= far:
        raise ValueError("invalid frustrum")
    if perspective:
        if near <= _EPS:
            raise ValueError("invalid frustrum: near <= 0")
        t = 2.0 * near
        M = ((-t/(right-left), 0.0, (right+left)/(right-left), 0.0),
             (0.0, -t/(top-bottom), (top+bottom)/(top-bottom), 0.0),
             (0.0, 0.0, -(far+near)/(far-near), t*far/(far-near)),
             (0.0, 0.0, -1.0, 0.0))
    else:
        M = ((2.0/(right-left), 0.0, 0.0, (right+left)/(left-right)),
             (0.0, 2.0/(top-bottom), 0.0, (top+bottom)/(bottom-top)),
             (0.0, 0.0, 2.0/(far-near), (far+near)/(near-far)),
             (0.0, 0.0, 0.0, 1.0))
    return numpy.array(M, dtype=numpy.float64)


def shear_matrix(angle, direction, point, normal):
    """Return matrix to shear by angle along direction vector on shear plane.

    The shear plane is defined by a point and normal vector. The direction
    vector must be orthogonal to the plane's normal vector.

    A point P is transformed by the shear matrix into P" such that
    the vector P-P" is parallel to the direction vector and its extent is
    given by the angle of P-P'-P", where P' is the orthogonal projection
    of P onto the shear plane.

    >>> angle = (random.random() - 0.5) * 4*math.pi
    >>> direct = numpy.random.random(3) - 0.5
    >>> point = numpy.random.random(3) - 0.5
    >>> normal = numpy.cross(direct, numpy.random.random(3))
    >>> S = shear_matrix(angle, direct, point, normal)
    >>> numpy.allclose(1.0, numpy.linalg.det(S))
    True

    """
    normal = unit_vector(normal[:3])
    direction = unit_vector(direction[:3])
    if abs(numpy.dot(normal, direction)) > 1e-6:
        raise ValueError("direction and normal vectors are not orthogonal")
    angle = math.tan(angle)
    M = numpy.identity(4)
    M[:3, :3] += angle * numpy.outer(direction, normal)
    M[:3, 3] = -angle * numpy.dot(point[:3], normal) * direction
    return M


def shear_from_matrix(matrix):
    """Return shear angle, direction and plane from shear matrix.

    >>> angle = (random.random() - 0.5) * 4*math.pi
    >>> direct = numpy.random.random(3) - 0.5
    >>> point = numpy.random.random(3) - 0.5
    >>> normal = numpy.cross(direct, numpy.random.random(3))
    >>> S0 = shear_matrix(angle, direct, point, normal)
    >>> angle, direct, point, normal = shear_from_matrix(S0)
    >>> S1 = shear_matrix(angle, direct, point, normal)
    >>> is_same_transform(S0, S1)
    True

    """
    M = numpy.array(matrix, dtype=numpy.float64, copy=False)
    M33 = M[:3, :3]
    # normal: cross independent eigenvectors corresponding to the eigenvalue 1
    l, V = numpy.linalg.eig(M33)
    i = numpy.where(abs(numpy.real(l) - 1.0) < 1e-4)[0]
    if len(i) < 2:
        raise ValueError("No two linear independent eigenvectors found %s" % l)
    V = numpy.real(V[:, i]).squeeze().T
    lenorm = -1.0
    for i0, i1 in ((0, 1), (0, 2), (1, 2)):
        n = numpy.cross(V[i0], V[i1])
        l = vector_norm(n)
        if l > lenorm:
            lenorm = l
            normal = n
    normal /= lenorm
    # direction and angle
    direction = numpy.dot(M33 - numpy.identity(3), normal)
    angle = vector_norm(direction)
    direction /= angle
    angle = math.atan(angle)
    # point: eigenvector corresponding to eigenvalue 1
    l, V = numpy.linalg.eig(M)
    i = numpy.where(abs(numpy.real(l) - 1.0) < 1e-8)[0]
    if not len(i):
        raise ValueError("no eigenvector corresponding to eigenvalue 1")
    point = numpy.real(V[:, i[-1]]).squeeze()
    point /= point[3]
    return angle, direction, point, normal


def decompose_matrix(matrix):
    """Return sequence of transformations from transformation matrix.

    matrix : array_like
        Non-degenerative homogeneous transformation matrix

    Return tuple of:
        scale : vector of 3 scaling factors
        shear : list of shear factors for x-y, x-z, y-z axes
        angles : list of Euler angles about static x, y, z axes
        translate : translation vector along x, y, z axes
        perspective : perspective partition of matrix

    Raise ValueError if matrix is of wrong type or degenerative.

    >>> T0 = translation_matrix((1, 2, 3))
    >>> scale, shear, angles, trans, persp = decompose_matrix(T0)
    >>> T1 = translation_matrix(trans)
    >>> numpy.allclose(T0, T1)
    True
    >>> S = scale_matrix(0.123)
    >>> scale, shear, angles, trans, persp = decompose_matrix(S)
    >>> scale[0]
    0.123
    >>> R0 = euler_matrix(1, 2, 3)
    >>> scale, shear, angles, trans, persp = decompose_matrix(R0)
    >>> R1 = euler_matrix(*angles)
    >>> numpy.allclose(R0, R1)
    True

    """
    M = numpy.array(matrix, dtype=numpy.float64, copy=True).T
    if abs(M[3, 3]) < _EPS:
        raise ValueError("M[3, 3] is zero")
    M /= M[3, 3]
    P = M.copy()
    P[:, 3] = 0, 0, 0, 1
    if not numpy.linalg.det(P):
        raise ValueError("Matrix is singular")

    scale = numpy.zeros((3, ), dtype=numpy.float64)
    shear = [0, 0, 0]
    angles = [0, 0, 0]

    if any(abs(M[:3, 3]) > _EPS):
        perspective = numpy.dot(M[:, 3], numpy.linalg.inv(P.T))
        M[:, 3] = 0, 0, 0, 1
    else:
        perspective = numpy.array((0, 0, 0, 1), dtype=numpy.float64)

    translate = M[3, :3].copy()
    M[3, :3] = 0

    row = M[:3, :3].copy()
    scale[0] = vector_norm(row[0])
    row[0] /= scale[0]
    shear[0] = numpy.dot(row[0], row[1])
    row[1] -= row[0] * shear[0]
    scale[1] = vector_norm(row[1])
    row[1] /= scale[1]
    shear[0] /= scale[1]
    shear[1] = numpy.dot(row[0], row[2])
    row[2] -= row[0] * shear[1]
    shear[2] = numpy.dot(row[1], row[2])
    row[2] -= row[1] * shear[2]
    scale[2] = vector_norm(row[2])
    row[2] /= scale[2]
    shear[1:] /= scale[2]

    if numpy.dot(row[0], numpy.cross(row[1], row[2])) < 0:
        scale *= -1
        row *= -1

    angles[1] = math.asin(-row[0, 2])
    if math.cos(angles[1]):
        angles[0] = math.atan2(row[1, 2], row[2, 2])
        angles[2] = math.atan2(row[0, 1], row[0, 0])
    else:
        #angles[0] = math.atan2(row[1, 0], row[1, 1])
        angles[0] = math.atan2(-row[2, 1], row[1, 1])
        angles[2] = 0.0

    return scale, shear, angles, translate, perspective


def compose_matrix(scale=None, shear=None, angles=None, translate=None,
                   perspective=None):
    """Return transformation matrix from sequence of transformations.

    This is the inverse of the decompose_matrix function.

    Sequence of transformations:
        scale : vector of 3 scaling factors
        shear : list of shear factors for x-y, x-z, y-z axes
        angles : list of Euler angles about static x, y, z axes
        translate : translation vector along x, y, z axes
        perspective : perspective partition of matrix

    >>> scale = numpy.random.random(3) - 0.5
    >>> shear = numpy.random.random(3) - 0.5
    >>> angles = (numpy.random.random(3) - 0.5) * (2*math.pi)
    >>> trans = numpy.random.random(3) - 0.5
    >>> persp = numpy.random.random(4) - 0.5
    >>> M0 = compose_matrix(scale, shear, angles, trans, persp)
    >>> result = decompose_matrix(M0)
    >>> M1 = compose_matrix(*result)
    >>> is_same_transform(M0, M1)
    True

    """
    M = numpy.identity(4)
    if perspective is not None:
        P = numpy.identity(4)
        P[3, :] = perspective[:4]
        M = numpy.dot(M, P)
    if translate is not None:
        T = numpy.identity(4)
        T[:3, 3] = translate[:3]
        M = numpy.dot(M, T)
    if angles is not None:
        R = euler_matrix(angles[0], angles[1], angles[2], 'sxyz')
        M = numpy.dot(M, R)
    if shear is not None:
        Z = numpy.identity(4)
        Z[1, 2] = shear[2]
        Z[0, 2] = shear[1]
        Z[0, 1] = shear[0]
        M = numpy.dot(M, Z)
    if scale is not None:
        S = numpy.identity(4)
        S[0, 0] = scale[0]
        S[1, 1] = scale[1]
        S[2, 2] = scale[2]
        M = numpy.dot(M, S)
    M /= M[3, 3]
    return M


def orthogonalization_matrix(lengths, angles):
    """Return orthogonalization matrix for crystallographic cell coordinates.

    Angles are expected in degrees.

    The de-orthogonalization matrix is the inverse.

    >>> O = orthogonalization_matrix((10., 10., 10.), (90., 90., 90.))
    >>> numpy.allclose(O[:3, :3], numpy.identity(3, float) * 10)
    True
    >>> O = orthogonalization_matrix([9.8, 12.0, 15.5], [87.2, 80.7, 69.7])
    >>> numpy.allclose(numpy.sum(O), 43.063229)
    True

    """
    a, b, c = lengths
    angles = numpy.radians(angles)
    sina, sinb, _ = numpy.sin(angles)
    cosa, cosb, cosg = numpy.cos(angles)
    co = (cosa * cosb - cosg) / (sina * sinb)
    return numpy.array((
        ( a*sinb*math.sqrt(1.0-co*co),  0.0,    0.0, 0.0),
        (-a*sinb*co,                    b*sina, 0.0, 0.0),
        ( a*cosb,                       b*cosa, c,   0.0),
        ( 0.0,                          0.0,    0.0, 1.0)),
        dtype=numpy.float64)


def superimposition_matrix(v0, v1, scaling=False, usesvd=True):
    """Return matrix to transform given vector set into second vector set.

    v0 and v1 are shape (3, \*) or (4, \*) arrays of at least 3 vectors.

    If usesvd is True, the weighted sum of squared deviations (RMSD) is
    minimized according to the algorithm by W. Kabsch [8]. Otherwise the
    quaternion based algorithm by B. Horn [9] is used (slower when using
    this Python implementation).

    The returned matrix performs rotation, translation and uniform scaling
    (if specified).

    >>> v0 = numpy.random.rand(3, 10)
    >>> M = superimposition_matrix(v0, v0)
    >>> numpy.allclose(M, numpy.identity(4))
    True
    >>> R = random_rotation_matrix(numpy.random.random(3))
    >>> v0 = ((1,0,0), (0,1,0), (0,0,1), (1,1,1))
    >>> v1 = numpy.dot(R, v0)
    >>> M = superimposition_matrix(v0, v1)
    >>> numpy.allclose(v1, numpy.dot(M, v0))
    True
    >>> v0 = (numpy.random.rand(4, 100) - 0.5) * 20.0
    >>> v0[3] = 1.0
    >>> v1 = numpy.dot(R, v0)
    >>> M = superimposition_matrix(v0, v1)
    >>> numpy.allclose(v1, numpy.dot(M, v0))
    True
    >>> S = scale_matrix(random.random())
    >>> T = translation_matrix(numpy.random.random(3)-0.5)
    >>> M = concatenate_matrices(T, R, S)
    >>> v1 = numpy.dot(M, v0)
    >>> v0[:3] += numpy.random.normal(0.0, 1e-9, 300).reshape(3, -1)
    >>> M = superimposition_matrix(v0, v1, scaling=True)
    >>> numpy.allclose(v1, numpy.dot(M, v0))
    True
    >>> M = superimposition_matrix(v0, v1, scaling=True, usesvd=False)
    >>> numpy.allclose(v1, numpy.dot(M, v0))
    True
    >>> v = numpy.empty((4, 100, 3), dtype=numpy.float64)
    >>> v[:, :, 0] = v0
    >>> M = superimposition_matrix(v0, v1, scaling=True, usesvd=False)
    >>> numpy.allclose(v1, numpy.dot(M, v[:, :, 0]))
    True

    """
    v0 = numpy.array(v0, dtype=numpy.float64, copy=False)[:3]
    v1 = numpy.array(v1, dtype=numpy.float64, copy=False)[:3]

    if v0.shape != v1.shape or v0.shape[1] < 3:
        raise ValueError("Vector sets are of wrong shape or type.")

    # move centroids to origin
    t0 = numpy.mean(v0, axis=1)
    t1 = numpy.mean(v1, axis=1)
    v0 = v0 - t0.reshape(3, 1)
    v1 = v1 - t1.reshape(3, 1)

    if usesvd:
        # Singular Value Decomposition of covariance matrix
        u, s, vh = numpy.linalg.svd(numpy.dot(v1, v0.T))
        # rotation matrix from SVD orthonormal bases
        R = numpy.dot(u, vh)
        if numpy.linalg.det(R) < 0.0:
            # R does not constitute right handed system
            R -= numpy.outer(u[:, 2], vh[2, :]*2.0)
            s[-1] *= -1.0
        # homogeneous transformation matrix
        M = numpy.identity(4)
        M[:3, :3] = R
    else:
        # compute symmetric matrix N
        xx, yy, zz = numpy.sum(v0 * v1, axis=1)
        xy, yz, zx = numpy.sum(v0 * numpy.roll(v1, -1, axis=0), axis=1)
        xz, yx, zy = numpy.sum(v0 * numpy.roll(v1, -2, axis=0), axis=1)
        N = ((xx+yy+zz, yz-zy,    zx-xz,    xy-yx),
             (yz-zy,    xx-yy-zz, xy+yx,    zx+xz),
             (zx-xz,    xy+yx,   -xx+yy-zz, yz+zy),
             (xy-yx,    zx+xz,    yz+zy,   -xx-yy+zz))
        # quaternion: eigenvector corresponding to most positive eigenvalue
        l, V = numpy.linalg.eig(N)
        q = V[:, numpy.argmax(l)]
        q /= vector_norm(q) # unit quaternion
        q = numpy.roll(q, -1) # move w component to end
        # homogeneous transformation matrix
        M = quaternion_matrix(q)

    # scale: ratio of rms deviations from centroid
    if scaling:
        v0 *= v0
        v1 *= v1
        M[:3, :3] *= math.sqrt(numpy.sum(v1) / numpy.sum(v0))

    # translation
    M[:3, 3] = t1
    T = numpy.identity(4)
    T[:3, 3] = -t0
    M = numpy.dot(M, T)
    return M


def euler_matrix(ai, aj, ak, axes='sxyz'):
    """Return homogeneous rotation matrix from Euler angles and axis sequence.

    ai, aj, ak : Euler's roll, pitch and yaw angles
    axes : One of 24 axis sequences as string or encoded tuple

    >>> R = euler_matrix(1, 2, 3, 'syxz')
    >>> numpy.allclose(numpy.sum(R[0]), -1.34786452)
    True
    >>> R = euler_matrix(1, 2, 3, (0, 1, 0, 1))
    >>> numpy.allclose(numpy.sum(R[0]), -0.383436184)
    True
    >>> ai, aj, ak = (4.0*math.pi) * (numpy.random.random(3) - 0.5)
    >>> for axes in _AXES2TUPLE.keys():
    ...    R = euler_matrix(ai, aj, ak, axes)
    >>> for axes in _TUPLE2AXES.keys():
    ...    R = euler_matrix(ai, aj, ak, axes)

    """
    try:
        firstaxis, parity, repetition, frame = _AXES2TUPLE[axes]
    except (AttributeError, KeyError):
        _ = _TUPLE2AXES[axes]
        firstaxis, parity, repetition, frame = axes

    i = firstaxis
    j = _NEXT_AXIS[i+parity]
    k = _NEXT_AXIS[i-parity+1]

    if frame:
        ai, ak = ak, ai
    if parity:
        ai, aj, ak = -ai, -aj, -ak

    si, sj, sk = math.sin(ai), math.sin(aj), math.sin(ak)
    ci, cj, ck = math.cos(ai), math.cos(aj), math.cos(ak)
    cc, cs = ci*ck, ci*sk
    sc, ss = si*ck, si*sk

    M = numpy.identity(4)
    if repetition:
        M[i, i] = cj
        M[i, j] = sj*si
        M[i, k] = sj*ci
        M[j, i] = sj*sk
        M[j, j] = -cj*ss+cc
        M[j, k] = -cj*cs-sc
        M[k, i] = -sj*ck
        M[k, j] = cj*sc+cs
        M[k, k] = cj*cc-ss
    else:
        M[i, i] = cj*ck
        M[i, j] = sj*sc-cs
        M[i, k] = sj*cc+ss
        M[j, i] = cj*sk
        M[j, j] = sj*ss+cc
        M[j, k] = sj*cs-sc
        M[k, i] = -sj
        M[k, j] = cj*si
        M[k, k] = cj*ci
    return M


def euler_from_matrix(matrix, axes='sxyz'):
    """Return Euler angles from rotation matrix for specified axis sequence.

    axes : One of 24 axis sequences as string or encoded tuple

    Note that many Euler angle triplets can describe one matrix.

    >>> R0 = euler_matrix(1, 2, 3, 'syxz')
    >>> al, be, ga = euler_from_matrix(R0, 'syxz')
    >>> R1 = euler_matrix(al, be, ga, 'syxz')
    >>> numpy.allclose(R0, R1)
    True
    >>> angles = (4.0*math.pi) * (numpy.random.random(3) - 0.5)
    >>> for axes in _AXES2TUPLE.keys():
    ...    R0 = euler_matrix(axes=axes, *angles)
    ...    R1 = euler_matrix(axes=axes, *euler_from_matrix(R0, axes))
    ...    if not numpy.allclose(R0, R1): print axes, "failed"

    """
    try:
        firstaxis, parity, repetition, frame = _AXES2TUPLE[axes.lower()]
    except (AttributeError, KeyError):
        _ = _TUPLE2AXES[axes]
        firstaxis, parity, repetition, frame = axes

    i = firstaxis
    j = _NEXT_AXIS[i+parity]
    k = _NEXT_AXIS[i-parity+1]

    M = numpy.array(matrix, dtype=numpy.float64, copy=False)[:3, :3]
    if repetition:
        sy = math.sqrt(M[i, j]*M[i, j] + M[i, k]*M[i, k])
        if sy > _EPS:
            ax = math.atan2( M[i, j],  M[i, k])
            ay = math.atan2( sy,       M[i, i])
            az = math.atan2( M[j, i], -M[k, i])
        else:
            ax = math.atan2(-M[j, k],  M[j, j])
            ay = math.atan2( sy,       M[i, i])
            az = 0.0
    else:
        cy = math.sqrt(M[i, i]*M[i, i] + M[j, i]*M[j, i])
        if cy > _EPS:
            ax = math.atan2( M[k, j],  M[k, k])
            ay = math.atan2(-M[k, i],  cy)
            az = math.atan2( M[j, i],  M[i, i])
        else:
            ax = math.atan2(-M[j, k],  M[j, j])
            ay = math.atan2(-M[k, i],  cy)
            az = 0.0

    if parity:
        ax, ay, az = -ax, -ay, -az
    if frame:
        ax, az = az, ax
    return ax, ay, az


def euler_from_quaternion(quaternion, axes='sxyz'):
    """Return Euler angles from quaternion for specified axis sequence.

    >>> angles = euler_from_quaternion([0.06146124, 0, 0, 0.99810947])
    >>> numpy.allclose(angles, [0.123, 0, 0])
    True

    """
    return euler_from_matrix(quaternion_matrix(quaternion), axes)


def quaternion_from_euler(ai, aj, ak, axes='sxyz'):
    """Return quaternion from Euler angles and axis sequence.

    ai, aj, ak : Euler's roll, pitch and yaw angles
    axes : One of 24 axis sequences as string or encoded tuple

    >>> q = quaternion_from_euler(1, 2, 3, 'ryxz')
    >>> numpy.allclose(q, [0.310622, -0.718287, 0.444435, 0.435953])
    True

    """
    try:
        firstaxis, parity, repetition, frame = _AXES2TUPLE[axes.lower()]
    except (AttributeError, KeyError):
        _ = _TUPLE2AXES[axes]
        firstaxis, parity, repetition, frame = axes

    i = firstaxis
    j = _NEXT_AXIS[i+parity]
    k = _NEXT_AXIS[i-parity+1]

    if frame:
        ai, ak = ak, ai
    if parity:
        aj = -aj

    ai /= 2.0
    aj /= 2.0
    ak /= 2.0
    ci = math.cos(ai)
    si = math.sin(ai)
    cj = math.cos(aj)
    sj = math.sin(aj)
    ck = math.cos(ak)
    sk = math.sin(ak)
    cc = ci*ck
    cs = ci*sk
    sc = si*ck
    ss = si*sk

    quaternion = numpy.empty((4, ), dtype=numpy.float64)
    if repetition:
        quaternion[i] = cj*(cs + sc)
        quaternion[j] = sj*(cc + ss)
        quaternion[k] = sj*(cs - sc)
        quaternion[3] = cj*(cc - ss)
    else:
        quaternion[i] = cj*sc - sj*cs
        quaternion[j] = cj*ss + sj*cc
        quaternion[k] = cj*cs - sj*sc
        quaternion[3] = cj*cc + sj*ss
    if parity:
        quaternion[j] *= -1

    return quaternion


def quaternion_about_axis(angle, axis):
    """Return quaternion for rotation about axis.

    >>> q = quaternion_about_axis(0.123, (1, 0, 0))
    >>> numpy.allclose(q, [0.06146124, 0, 0, 0.99810947])
    True

    """
    quaternion = numpy.zeros((4, ), dtype=numpy.float64)
    quaternion[:3] = axis[:3]
    qlen = vector_norm(quaternion)
    if qlen > _EPS:
        quaternion *= math.sin(angle/2.0) / qlen
    quaternion[3] = math.cos(angle/2.0)
    return quaternion


def quaternion_matrix(quaternion):
    """Return homogeneous rotation matrix from quaternion.

    >>> R = quaternion_matrix([0.06146124, 0, 0, 0.99810947])
    >>> numpy.allclose(R, rotation_matrix(0.123, (1, 0, 0)))
    True

    """
    q = numpy.array(quaternion[:4], dtype=numpy.float64, copy=True)
    nq = numpy.dot(q, q)
    if nq < _EPS:
        return numpy.identity(4)
    q *= math.sqrt(2.0 / nq)
    q = numpy.outer(q, q)
    return numpy.array((
        (1.0-q[1, 1]-q[2, 2],     q[0, 1]-q[2, 3],     q[0, 2]+q[1, 3], 0.0),
        (    q[0, 1]+q[2, 3], 1.0-q[0, 0]-q[2, 2],     q[1, 2]-q[0, 3], 0.0),
        (    q[0, 2]-q[1, 3],     q[1, 2]+q[0, 3], 1.0-q[0, 0]-q[1, 1], 0.0),
        (                0.0,                 0.0,                 0.0, 1.0)
        ), dtype=numpy.float64)


def quaternion_from_matrix(matrix):
    """Return quaternion from rotation matrix.

    >>> R = rotation_matrix(0.123, (1, 2, 3))
    >>> q = quaternion_from_matrix(R)
    >>> numpy.allclose(q, [0.0164262, 0.0328524, 0.0492786, 0.9981095])
    True

    """
    q = numpy.empty((4, ), dtype=numpy.float64)
    M = numpy.array(matrix, dtype=numpy.float64, copy=False)[:4, :4]
    t = numpy.trace(M)
    if t > M[3, 3]:
        q[3] = t
        q[2] = M[1, 0] - M[0, 1]
        q[1] = M[0, 2] - M[2, 0]
        q[0] = M[2, 1] - M[1, 2]
    else:
        i, j, k = 0, 1, 2
        if M[1, 1] > M[0, 0]:
            i, j, k = 1, 2, 0
        if M[2, 2] > M[i, i]:
            i, j, k = 2, 0, 1
        t = M[i, i] - (M[j, j] + M[k, k]) + M[3, 3]
        q[i] = t
        q[j] = M[i, j] + M[j, i]
        q[k] = M[k, i] + M[i, k]
        q[3] = M[k, j] - M[j, k]
    q *= 0.5 / math.sqrt(t * M[3, 3])
    return q


def quaternion_multiply(quaternion1, quaternion0):
    """Return multiplication of two quaternions.

    >>> q = quaternion_multiply([1, -2, 3, 4], [-5, 6, 7, 8])
    >>> numpy.allclose(q, [-44, -14, 48, 28])
    True

    """
    x0, y0, z0, w0 = quaternion0
    x1, y1, z1, w1 = quaternion1
    return numpy.array((
         x1*w0 + y1*z0 - z1*y0 + w1*x0,
        -x1*z0 + y1*w0 + z1*x0 + w1*y0,
         x1*y0 - y1*x0 + z1*w0 + w1*z0,
        -x1*x0 - y1*y0 - z1*z0 + w1*w0), dtype=numpy.float64)


def quaternion_conjugate(quaternion):
    """Return conjugate of quaternion.

    >>> q0 = random_quaternion()
    >>> q1 = quaternion_conjugate(q0)
    >>> q1[3] == q0[3] and all(q1[:3] == -q0[:3])
    True

    """
    return numpy.array((-quaternion[0], -quaternion[1],
                        -quaternion[2], quaternion[3]), dtype=numpy.float64)


def quaternion_inverse(quaternion):
    """Return inverse of quaternion.

    >>> q0 = random_quaternion()
    >>> q1 = quaternion_inverse(q0)
    >>> numpy.allclose(quaternion_multiply(q0, q1), [0, 0, 0, 1])
    True

    """
    return quaternion_conjugate(quaternion) / numpy.dot(quaternion, quaternion)


def quaternion_slerp(quat0, quat1, fraction, spin=0, shortestpath=True):
    """Return spherical linear interpolation between two quaternions.

    >>> q0 = random_quaternion()
    >>> q1 = random_quaternion()
    >>> q = quaternion_slerp(q0, q1, 0.0)
    >>> numpy.allclose(q, q0)
    True
    >>> q = quaternion_slerp(q0, q1, 1.0, 1)
    >>> numpy.allclose(q, q1)
    True
    >>> q = quaternion_slerp(q0, q1, 0.5)
    >>> angle = math.acos(numpy.dot(q0, q))
    >>> numpy.allclose(2.0, math.acos(numpy.dot(q0, q1)) / angle) or \
        numpy.allclose(2.0, math.acos(-numpy.dot(q0, q1)) / angle)
    True

    """
    q0 = unit_vector(quat0[:4])
    q1 = unit_vector(quat1[:4])
    if fraction == 0.0:
        return q0
    elif fraction == 1.0:
        return q1
    d = numpy.dot(q0, q1)
    if abs(abs(d) - 1.0) < _EPS:
        return q0
    if shortestpath and d < 0.0:
        # invert rotation
        d = -d
        q1 *= -1.0
    angle = math.acos(d) + spin * math.pi
    if abs(angle) < _EPS:
        return q0
    isin = 1.0 / math.sin(angle)
    q0 *= math.sin((1.0 - fraction) * angle) * isin
    q1 *= math.sin(fraction * angle) * isin
    q0 += q1
    return q0


def random_quaternion(rand=None):
    """Return uniform random unit quaternion.

    rand: array like or None
        Three independent random variables that are uniformly distributed
        between 0 and 1.

    >>> q = random_quaternion()
    >>> numpy.allclose(1.0, vector_norm(q))
    True
    >>> q = random_quaternion(numpy.random.random(3))
    >>> q.shape
    (4,)

    """
    if rand is None:
        rand = numpy.random.rand(3)
    else:
        assert len(rand) == 3
    r1 = numpy.sqrt(1.0 - rand[0])
    r2 = numpy.sqrt(rand[0])
    pi2 = math.pi * 2.0
    t1 = pi2 * rand[1]
    t2 = pi2 * rand[2]
    return numpy.array((numpy.sin(t1)*r1,
                        numpy.cos(t1)*r1,
                        numpy.sin(t2)*r2,
                        numpy.cos(t2)*r2), dtype=numpy.float64)


def random_rotation_matrix(rand=None):
    """Return uniform random rotation matrix.

    rnd: array like
        Three independent random variables that are uniformly distributed
        between 0 and 1 for each returned quaternion.

    >>> R = random_rotation_matrix()
    >>> numpy.allclose(numpy.dot(R.T, R), numpy.identity(4))
    True

    """
    return quaternion_matrix(random_quaternion(rand))


class Arcball(object):
    """Virtual Trackball Control.

    >>> ball = Arcball()
    >>> ball = Arcball(initial=numpy.identity(4))
    >>> ball.place([320, 320], 320)
    >>> ball.down([500, 250])
    >>> ball.drag([475, 275])
    >>> R = ball.matrix()
    >>> numpy.allclose(numpy.sum(R), 3.90583455)
    True
    >>> ball = Arcball(initial=[0, 0, 0, 1])
    >>> ball.place([320, 320], 320)
    >>> ball.setaxes([1,1,0], [-1, 1, 0])
    >>> ball.setconstrain(True)
    >>> ball.down([400, 200])
    >>> ball.drag([200, 400])
    >>> R = ball.matrix()
    >>> numpy.allclose(numpy.sum(R), 0.2055924)
    True
    >>> ball.next()

    """

    def __init__(self, initial=None):
        """Initialize virtual trackball control.

        initial : quaternion or rotation matrix

        """
        self._axis = None
        self._axes = None
        self._radius = 1.0
        self._center = [0.0, 0.0]
        self._vdown = numpy.array([0, 0, 1], dtype=numpy.float64)
        self._constrain = False

        if initial is None:
            self._qdown = numpy.array([0, 0, 0, 1], dtype=numpy.float64)
        else:
            initial = numpy.array(initial, dtype=numpy.float64)
            if initial.shape == (4, 4):
                self._qdown = quaternion_from_matrix(initial)
            elif initial.shape == (4, ):
                initial /= vector_norm(initial)
                self._qdown = initial
            else:
                raise ValueError("initial not a quaternion or matrix.")

        self._qnow = self._qpre = self._qdown

    def place(self, center, radius):
        """Place Arcball, e.g. when window size changes.

        center : sequence[2]
            Window coordinates of trackball center.
        radius : float
            Radius of trackball in window coordinates.

        """
        self._radius = float(radius)
        self._center[0] = center[0]
        self._center[1] = center[1]

    def setaxes(self, *axes):
        """Set axes to constrain rotations."""
        if axes is None:
            self._axes = None
        else:
            self._axes = [unit_vector(axis) for axis in axes]

    def setconstrain(self, constrain):
        """Set state of constrain to axis mode."""
        self._constrain = constrain == True

    def getconstrain(self):
        """Return state of constrain to axis mode."""
        return self._constrain

    def down(self, point):
        """Set initial cursor window coordinates and pick constrain-axis."""
        self._vdown = arcball_map_to_sphere(point, self._center, self._radius)
        self._qdown = self._qpre = self._qnow

        if self._constrain and self._axes is not None:
            self._axis = arcball_nearest_axis(self._vdown, self._axes)
            self._vdown = arcball_constrain_to_axis(self._vdown, self._axis)
        else:
            self._axis = None

    def drag(self, point):
        """Update current cursor window coordinates."""
        vnow = arcball_map_to_sphere(point, self._center, self._radius)

        if self._axis is not None:
            vnow = arcball_constrain_to_axis(vnow, self._axis)

        self._qpre = self._qnow

        t = numpy.cross(self._vdown, vnow)
        if numpy.dot(t, t) < _EPS:
            self._qnow = self._qdown
        else:
            q = [t[0], t[1], t[2], numpy.dot(self._vdown, vnow)]
            self._qnow = quaternion_multiply(q, self._qdown)

    def next(self, acceleration=0.0):
        """Continue rotation in direction of last drag."""
        q = quaternion_slerp(self._qpre, self._qnow, 2.0+acceleration, False)
        self._qpre, self._qnow = self._qnow, q

    def matrix(self):
        """Return homogeneous rotation matrix."""
        return quaternion_matrix(self._qnow)


def arcball_map_to_sphere(point, center, radius):
    """Return unit sphere coordinates from window coordinates."""
    v = numpy.array(((point[0] - center[0]) / radius,
                     (center[1] - point[1]) / radius,
                     0.0), dtype=numpy.float64)
    n = v[0]*v[0] + v[1]*v[1]
    if n > 1.0:
        v /= math.sqrt(n) # position outside of sphere
    else:
        v[2] = math.sqrt(1.0 - n)
    return v


def arcball_constrain_to_axis(point, axis):
    """Return sphere point perpendicular to axis."""
    v = numpy.array(point, dtype=numpy.float64, copy=True)
    a = numpy.array(axis, dtype=numpy.float64, copy=True)
    v -= a * numpy.dot(a, v) # on plane
    n = vector_norm(v)
    if n > _EPS:
        if v[2] < 0.0:
            v *= -1.0
        v /= n
        return v
    if a[2] == 1.0:
        return numpy.array([1, 0, 0], dtype=numpy.float64)
    return unit_vector([-a[1], a[0], 0])


def arcball_nearest_axis(point, axes):
    """Return axis, which arc is nearest to point."""
    point = numpy.array(point, dtype=numpy.float64, copy=False)
    nearest = None
    mx = -1.0
    for axis in axes:
        t = numpy.dot(arcball_constrain_to_axis(point, axis), point)
        if t > mx:
            nearest = axis
            mx = t
    return nearest


# epsilon for testing whether a number is close to zero
_EPS = numpy.finfo(float).eps * 4.0

# axis sequences for Euler angles
_NEXT_AXIS = [1, 2, 0, 1]

# map axes strings to/from tuples of inner axis, parity, repetition, frame
_AXES2TUPLE = {
    'sxyz': (0, 0, 0, 0), 'sxyx': (0, 0, 1, 0), 'sxzy': (0, 1, 0, 0),
    'sxzx': (0, 1, 1, 0), 'syzx': (1, 0, 0, 0), 'syzy': (1, 0, 1, 0),
    'syxz': (1, 1, 0, 0), 'syxy': (1, 1, 1, 0), 'szxy': (2, 0, 0, 0),
    'szxz': (2, 0, 1, 0), 'szyx': (2, 1, 0, 0), 'szyz': (2, 1, 1, 0),
    'rzyx': (0, 0, 0, 1), 'rxyx': (0, 0, 1, 1), 'ryzx': (0, 1, 0, 1),
    'rxzx': (0, 1, 1, 1), 'rxzy': (1, 0, 0, 1), 'ryzy': (1, 0, 1, 1),
    'rzxy': (1, 1, 0, 1), 'ryxy': (1, 1, 1, 1), 'ryxz': (2, 0, 0, 1),
    'rzxz': (2, 0, 1, 1), 'rxyz': (2, 1, 0, 1), 'rzyz': (2, 1, 1, 1)}

_TUPLE2AXES = dict((v, k) for k, v in _AXES2TUPLE.items())

# helper functions

def vector_norm(data, axis=None, out=None):
    """Return length, i.e. eucledian norm, of ndarray along axis.

    >>> v = numpy.random.random(3)
    >>> n = vector_norm(v)
    >>> numpy.allclose(n, numpy.linalg.norm(v))
    True
    >>> v = numpy.random.rand(6, 5, 3)
    >>> n = vector_norm(v, axis=-1)
    >>> numpy.allclose(n, numpy.sqrt(numpy.sum(v*v, axis=2)))
    True
    >>> n = vector_norm(v, axis=1)
    >>> numpy.allclose(n, numpy.sqrt(numpy.sum(v*v, axis=1)))
    True
    >>> v = numpy.random.rand(5, 4, 3)
    >>> n = numpy.empty((5, 3), dtype=numpy.float64)
    >>> vector_norm(v, axis=1, out=n)
    >>> numpy.allclose(n, numpy.sqrt(numpy.sum(v*v, axis=1)))
    True
    >>> vector_norm([])
    0.0
    >>> vector_norm([1.0])
    1.0

    """
    data = numpy.array(data, dtype=numpy.float64, copy=True)
    if out is None:
        if data.ndim == 1:
            return math.sqrt(numpy.dot(data, data))
        data *= data
        out = numpy.atleast_1d(numpy.sum(data, axis=axis))
        numpy.sqrt(out, out)
        return out
    else:
        data *= data
        numpy.sum(data, axis=axis, out=out)
        numpy.sqrt(out, out)


def unit_vector(data, axis=None, out=None):
    """Return ndarray normalized by length, i.e. eucledian norm, along axis.

    >>> v0 = numpy.random.random(3)
    >>> v1 = unit_vector(v0)
    >>> numpy.allclose(v1, v0 / numpy.linalg.norm(v0))
    True
    >>> v0 = numpy.random.rand(5, 4, 3)
    >>> v1 = unit_vector(v0, axis=-1)
    >>> v2 = v0 / numpy.expand_dims(numpy.sqrt(numpy.sum(v0*v0, axis=2)), 2)
    >>> numpy.allclose(v1, v2)
    True
    >>> v1 = unit_vector(v0, axis=1)
    >>> v2 = v0 / numpy.expand_dims(numpy.sqrt(numpy.sum(v0*v0, axis=1)), 1)
    >>> numpy.allclose(v1, v2)
    True
    >>> v1 = numpy.empty((5, 4, 3), dtype=numpy.float64)
    >>> unit_vector(v0, axis=1, out=v1)
    >>> numpy.allclose(v1, v2)
    True
    >>> list(unit_vector([]))
    []
    >>> list(unit_vector([1.0]))
    [1.0]

    """
    if out is None:
        data = numpy.array(data, dtype=numpy.float64, copy=True)
        if data.ndim == 1:
            data /= math.sqrt(numpy.dot(data, data))
            return data
    else:
        if out is not data:
            out[:] = numpy.array(data, copy=False)
        data = out
    length = numpy.atleast_1d(numpy.sum(data*data, axis))
    numpy.sqrt(length, length)
    if axis is not None:
        length = numpy.expand_dims(length, axis)
    data /= length
    if out is None:
        return data


def random_vector(size):
    """Return array of random doubles in the half-open interval [0.0, 1.0).

    >>> v = random_vector(10000)
    >>> numpy.all(v >= 0.0) and numpy.all(v < 1.0)
    True
    >>> v0 = random_vector(10)
    >>> v1 = random_vector(10)
    >>> numpy.any(v0 == v1)
    False

    """
    return numpy.random.random(size)


def inverse_matrix(matrix):
    """Return inverse of square transformation matrix.

    >>> M0 = random_rotation_matrix()
    >>> M1 = inverse_matrix(M0.T)
    >>> numpy.allclose(M1, numpy.linalg.inv(M0.T))
    True
    >>> for size in range(1, 7):
    ...     M0 = numpy.random.rand(size, size)
    ...     M1 = inverse_matrix(M0)
    ...     if not numpy.allclose(M1, numpy.linalg.inv(M0)): print size

    """
    return numpy.linalg.inv(matrix)


def concatenate_matrices(*matrices):
    """Return concatenation of series of transformation matrices.

    >>> M = numpy.random.rand(16).reshape((4, 4)) - 0.5
    >>> numpy.allclose(M, concatenate_matrices(M))
    True
    >>> numpy.allclose(numpy.dot(M, M.T), concatenate_matrices(M, M.T))
    True

    """
    M = numpy.identity(4)
    for i in matrices:
        M = numpy.dot(M, i)
    return M


def is_same_transform(matrix0, matrix1):
    """Return True if two matrices perform same transformation.

    >>> is_same_transform(numpy.identity(4), numpy.identity(4))
    True
    >>> is_same_transform(numpy.identity(4), random_rotation_matrix())
    False

    """
    matrix0 = numpy.array(matrix0, dtype=numpy.float64, copy=True)
    matrix0 /= matrix0[3, 3]
    matrix1 = numpy.array(matrix1, dtype=numpy.float64, copy=True)
    matrix1 /= matrix1[3, 3]
    return numpy.allclose(matrix0, matrix1)


def _import_module(module_name, warn=True, prefix='_py_', ignore='_'):
    """Try import all public attributes from module into global namespace.

    Existing attributes with name clashes are renamed with prefix.
    Attributes starting with underscore are ignored by default.

    Return True on successful import.

    """
    try:
        module = __import__(module_name)
    except ImportError:
        if warn:
            warnings.warn("Failed to import module " + module_name)
    else:
        for attr in dir(module):
            if ignore and attr.startswith(ignore):
                continue
            if prefix:
                if attr in globals():
                    globals()[prefix + attr] = globals()[attr]
                elif warn:
                    warnings.warn("No Python implementation of " + attr)
            globals()[attr] = getattr(module, attr)
        return True