denoising.cpp 19.1 KB
Newer Older
wester committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                        Intel License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective icvers.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of Intel Corporation may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#include "precomp.hpp"

#include "fast_nlmeans_denoising_invoker.hpp"
#include "fast_nlmeans_multi_denoising_invoker.hpp"
#include "fast_nlmeans_denoising_opencl.hpp"

template<typename ST, typename IT, typename UIT, typename D>
static void fastNlMeansDenoising_( const Mat& src, Mat& dst, const std::vector<float>& h,
                                   int templateWindowSize, int searchWindowSize)
{
    int hn = (int)h.size();
    double granularity = (double)std::max(1., (double)dst.total()/(1 << 17));

    switch (CV_MAT_CN(src.type())) {
        case 1:
            parallel_for_(cv::Range(0, src.rows),
                          FastNlMeansDenoisingInvoker<ST, IT, UIT, D, int>(
                              src, dst, templateWindowSize, searchWindowSize, &h[0]),
                          granularity);
            break;
        case 2:
            if (hn == 1)
                parallel_for_(cv::Range(0, src.rows),
                              FastNlMeansDenoisingInvoker<Vec<ST, 2>, IT, UIT, D, int>(
                                  src, dst, templateWindowSize, searchWindowSize, &h[0]),
                              granularity);
            else
                parallel_for_(cv::Range(0, src.rows),
                              FastNlMeansDenoisingInvoker<Vec<ST, 2>, IT, UIT, D, Vec2i>(
                                  src, dst, templateWindowSize, searchWindowSize, &h[0]),
                              granularity);
            break;
        case 3:
            if (hn == 1)
                parallel_for_(cv::Range(0, src.rows),
                              FastNlMeansDenoisingInvoker<Vec<ST, 3>, IT, UIT, D, int>(
                                  src, dst, templateWindowSize, searchWindowSize, &h[0]),
                              granularity);
            else
                parallel_for_(cv::Range(0, src.rows),
                              FastNlMeansDenoisingInvoker<Vec<ST, 3>, IT, UIT, D, Vec3i>(
                                  src, dst, templateWindowSize, searchWindowSize, &h[0]),
                              granularity);
            break;
        case 4:
            if (hn == 1)
                parallel_for_(cv::Range(0, src.rows),
                              FastNlMeansDenoisingInvoker<Vec<ST, 4>, IT, UIT, D, int>(
                                  src, dst, templateWindowSize, searchWindowSize, &h[0]),
                              granularity);
            else
                parallel_for_(cv::Range(0, src.rows),
                              FastNlMeansDenoisingInvoker<Vec<ST, 4>, IT, UIT, D, Vec4i>(
                                  src, dst, templateWindowSize, searchWindowSize, &h[0]),
                              granularity);
            break;
        default:
            CV_Error(Error::StsBadArg,
                     "Unsupported number of channels! Only 1, 2, 3, and 4 are supported");
    }
}

void cv::fastNlMeansDenoising( InputArray _src, OutputArray _dst, float h,
                               int templateWindowSize, int searchWindowSize)
{
    fastNlMeansDenoising(_src, _dst, std::vector<float>(1, h),
                         templateWindowSize, searchWindowSize);
}

void cv::fastNlMeansDenoising( InputArray _src, OutputArray _dst, const std::vector<float>& h,
                               int templateWindowSize, int searchWindowSize, int normType)
{
    int hn = (int)h.size(), type = _src.type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type);
    CV_Assert(hn == 1 || hn == cn);

    Size src_size = _src.size();
    CV_OCL_RUN(_src.dims() <= 2 && (_src.isUMat() || _dst.isUMat()) &&
               src_size.width > 5 && src_size.height > 5, // low accuracy on small sizes
               ocl_fastNlMeansDenoising(_src, _dst, &h[0], hn,
                                        templateWindowSize, searchWindowSize, normType))

    Mat src = _src.getMat();
    _dst.create(src_size, src.type());
    Mat dst = _dst.getMat();

    switch (normType) {
        case NORM_L2:
#ifdef HAVE_TEGRA_OPTIMIZATION
            if(hn == 1 && tegra::useTegra() &&
               tegra::fastNlMeansDenoising(src, dst, h[0], templateWindowSize, searchWindowSize))
                return;
#endif
            switch (depth) {
                case CV_8U:
                    fastNlMeansDenoising_<uchar, int, unsigned, DistSquared>(src, dst, h,
                                                                             templateWindowSize,
                                                                             searchWindowSize);
                    break;
                default:
                    CV_Error(Error::StsBadArg,
                             "Unsupported depth! Only CV_8U is supported for NORM_L2");
            }
            break;
        case NORM_L1:
            switch (depth) {
                case CV_8U:
                    fastNlMeansDenoising_<uchar, int, unsigned, DistAbs>(src, dst, h,
                                                                         templateWindowSize,
                                                                         searchWindowSize);
                    break;
                case CV_16U:
                    fastNlMeansDenoising_<ushort, int64, uint64, DistAbs>(src, dst, h,
                                                                          templateWindowSize,
                                                                          searchWindowSize);
                    break;
                default:
                    CV_Error(Error::StsBadArg,
                             "Unsupported depth! Only CV_8U and CV_16U are supported for NORM_L1");
            }
            break;
        default:
            CV_Error(Error::StsBadArg,
                     "Unsupported norm type! Only NORM_L2 and NORM_L1 are supported");
    }
}

void cv::fastNlMeansDenoisingColored( InputArray _src, OutputArray _dst,
                                      float h, float hForColorComponents,
                                      int templateWindowSize, int searchWindowSize)
{
    int type = _src.type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type);
    Size src_size = _src.size();
    if (type != CV_8UC3 && type != CV_8UC4)
    {
        CV_Error(Error::StsBadArg, "Type of input image should be CV_8UC3 or CV_8UC4!");
        return;
    }

    CV_OCL_RUN(_src.dims() <= 2 && (_dst.isUMat() || _src.isUMat()) &&
                src_size.width > 5 && src_size.height > 5, // low accuracy on small sizes
                ocl_fastNlMeansDenoisingColored(_src, _dst, h, hForColorComponents,
                                                templateWindowSize, searchWindowSize))

    Mat src = _src.getMat();
    _dst.create(src_size, type);
    Mat dst = _dst.getMat();

    Mat src_lab;
    cvtColor(src, src_lab, COLOR_LBGR2Lab);

    Mat l(src_size, CV_MAKE_TYPE(depth, 1));
    Mat ab(src_size, CV_MAKE_TYPE(depth, 2));
    Mat l_ab[] = { l, ab };
    int from_to[] = { 0,0, 1,1, 2,2 };
    mixChannels(&src_lab, 1, l_ab, 2, from_to, 3);

    fastNlMeansDenoising(l, l, h, templateWindowSize, searchWindowSize);
    fastNlMeansDenoising(ab, ab, hForColorComponents, templateWindowSize, searchWindowSize);

    Mat l_ab_denoised[] = { l, ab };
    Mat dst_lab(src_size, CV_MAKE_TYPE(depth, 3));
    mixChannels(l_ab_denoised, 2, &dst_lab, 1, from_to, 3);

    cvtColor(dst_lab, dst, COLOR_Lab2LBGR, cn);
}

static void fastNlMeansDenoisingMultiCheckPreconditions(
                               const std::vector<Mat>& srcImgs,
                               int imgToDenoiseIndex, int temporalWindowSize,
                               int templateWindowSize, int searchWindowSize)
{
    int src_imgs_size = static_cast<int>(srcImgs.size());
    if (src_imgs_size == 0)
    {
        CV_Error(Error::StsBadArg, "Input images vector should not be empty!");
    }

    if (temporalWindowSize % 2 == 0 ||
        searchWindowSize % 2 == 0 ||
        templateWindowSize % 2 == 0) {
        CV_Error(Error::StsBadArg, "All windows sizes should be odd!");
    }

    int temporalWindowHalfSize = temporalWindowSize / 2;
    if (imgToDenoiseIndex - temporalWindowHalfSize < 0 ||
        imgToDenoiseIndex + temporalWindowHalfSize >= src_imgs_size)
    {
        CV_Error(Error::StsBadArg,
            "imgToDenoiseIndex and temporalWindowSize "
            "should be chosen corresponding srcImgs size!");
    }

    for (int i = 1; i < src_imgs_size; i++)
        if (srcImgs[0].size() != srcImgs[i].size() || srcImgs[0].type() != srcImgs[i].type())
        {
            CV_Error(Error::StsBadArg, "Input images should have the same size and type!");
        }
}

template<typename ST, typename IT, typename UIT, typename D>
static void fastNlMeansDenoisingMulti_( const std::vector<Mat>& srcImgs, Mat& dst,
                                        int imgToDenoiseIndex, int temporalWindowSize,
                                        const std::vector<float>& h,
                                        int templateWindowSize, int searchWindowSize)
{
    int hn = (int)h.size();
    double granularity = (double)std::max(1., (double)dst.total()/(1 << 16));

    switch (srcImgs[0].type())
    {
        case CV_8U:
            parallel_for_(cv::Range(0, srcImgs[0].rows),
                          FastNlMeansMultiDenoisingInvoker<uchar, IT, UIT, D, int>(
                              srcImgs, imgToDenoiseIndex, temporalWindowSize,
                              dst, templateWindowSize, searchWindowSize, &h[0]),
                          granularity);
            break;
        case CV_8UC2:
            if (hn == 1)
                parallel_for_(cv::Range(0, srcImgs[0].rows),
                              FastNlMeansMultiDenoisingInvoker<Vec<ST, 2>, IT, UIT, D, int>(
                                  srcImgs, imgToDenoiseIndex, temporalWindowSize,
                                  dst, templateWindowSize, searchWindowSize, &h[0]),
                              granularity);
            else
                parallel_for_(cv::Range(0, srcImgs[0].rows),
                              FastNlMeansMultiDenoisingInvoker<Vec<ST, 2>, IT, UIT, D, Vec2i>(
                                  srcImgs, imgToDenoiseIndex, temporalWindowSize,
                                  dst, templateWindowSize, searchWindowSize, &h[0]),
                              granularity);
            break;
        case CV_8UC3:
            if (hn == 1)
                parallel_for_(cv::Range(0, srcImgs[0].rows),
                              FastNlMeansMultiDenoisingInvoker<Vec<ST, 3>, IT, UIT, D, int>(
                                  srcImgs, imgToDenoiseIndex, temporalWindowSize,
                                  dst, templateWindowSize, searchWindowSize, &h[0]),
                              granularity);
            else
                parallel_for_(cv::Range(0, srcImgs[0].rows),
                              FastNlMeansMultiDenoisingInvoker<Vec<ST, 3>, IT, UIT, D, Vec3i>(
                                  srcImgs, imgToDenoiseIndex, temporalWindowSize,
                                  dst, templateWindowSize, searchWindowSize, &h[0]),
                              granularity);
            break;
        case CV_8UC4:
            if (hn == 1)
                parallel_for_(cv::Range(0, srcImgs[0].rows),
                              FastNlMeansMultiDenoisingInvoker<Vec<ST, 4>, IT, UIT, D, int>(
                                  srcImgs, imgToDenoiseIndex, temporalWindowSize,
                                  dst, templateWindowSize, searchWindowSize, &h[0]),
                              granularity);
            else
                parallel_for_(cv::Range(0, srcImgs[0].rows),
                              FastNlMeansMultiDenoisingInvoker<Vec<ST, 4>, IT, UIT, D, Vec4i>(
                                  srcImgs, imgToDenoiseIndex, temporalWindowSize,
                                  dst, templateWindowSize, searchWindowSize, &h[0]),
                              granularity);
            break;
        default:
            CV_Error(Error::StsBadArg,
                "Unsupported image format! Only CV_8U, CV_8UC2, CV_8UC3 and CV_8UC4 are supported");
    }
}

void cv::fastNlMeansDenoisingMulti( InputArrayOfArrays _srcImgs, OutputArray _dst,
                                    int imgToDenoiseIndex, int temporalWindowSize,
                                    float h, int templateWindowSize, int searchWindowSize)
{
    fastNlMeansDenoisingMulti(_srcImgs, _dst, imgToDenoiseIndex, temporalWindowSize,
                              std::vector<float>(1, h), templateWindowSize, searchWindowSize);
}

void cv::fastNlMeansDenoisingMulti( InputArrayOfArrays _srcImgs, OutputArray _dst,
                                    int imgToDenoiseIndex, int temporalWindowSize,
                                    const std::vector<float>& h,
                                    int templateWindowSize, int searchWindowSize, int normType)
{
    std::vector<Mat> srcImgs;
    _srcImgs.getMatVector(srcImgs);

    fastNlMeansDenoisingMultiCheckPreconditions(
        srcImgs, imgToDenoiseIndex,
        temporalWindowSize, templateWindowSize, searchWindowSize);

    int hn = (int)h.size();
    int type = srcImgs[0].type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type);
    CV_Assert(hn == 1 || hn == cn);

    _dst.create(srcImgs[0].size(), srcImgs[0].type());
    Mat dst = _dst.getMat();

    switch (normType) {
        case NORM_L2:
            switch (depth) {
                case CV_8U:
                    fastNlMeansDenoisingMulti_<uchar, int, unsigned,
                                               DistSquared>(srcImgs, dst,
                                                            imgToDenoiseIndex, temporalWindowSize,
                                                            h,
                                                            templateWindowSize, searchWindowSize);
                    break;
                default:
                    CV_Error(Error::StsBadArg,
                             "Unsupported depth! Only CV_8U is supported for NORM_L2");
            }
            break;
        case NORM_L1:
            switch (depth) {
                case CV_8U:
                    fastNlMeansDenoisingMulti_<uchar, int, unsigned,
                                               DistAbs>(srcImgs, dst,
                                                        imgToDenoiseIndex, temporalWindowSize,
                                                        h,
                                                        templateWindowSize, searchWindowSize);
                    break;
                case CV_16U:
                    fastNlMeansDenoisingMulti_<ushort, int64, uint64,
                                               DistAbs>(srcImgs, dst,
                                                        imgToDenoiseIndex, temporalWindowSize,
                                                        h,
                                                        templateWindowSize, searchWindowSize);
                    break;
                default:
                    CV_Error(Error::StsBadArg,
                             "Unsupported depth! Only CV_8U and CV_16U are supported for NORM_L1");
            }
            break;
        default:
            CV_Error(Error::StsBadArg,
                     "Unsupported norm type! Only NORM_L2 and NORM_L1 are supported");
    }
}

void cv::fastNlMeansDenoisingColoredMulti( InputArrayOfArrays _srcImgs, OutputArray _dst,
                                           int imgToDenoiseIndex, int temporalWindowSize,
                                           float h, float hForColorComponents,
                                           int templateWindowSize, int searchWindowSize)
{
    std::vector<Mat> srcImgs;
    _srcImgs.getMatVector(srcImgs);

    fastNlMeansDenoisingMultiCheckPreconditions(
        srcImgs, imgToDenoiseIndex,
        temporalWindowSize, templateWindowSize, searchWindowSize);

    _dst.create(srcImgs[0].size(), srcImgs[0].type());
    Mat dst = _dst.getMat();

    int type = srcImgs[0].type(), depth = CV_MAT_DEPTH(type);
    int src_imgs_size = static_cast<int>(srcImgs.size());

    if (type != CV_8UC3)
    {
        CV_Error(Error::StsBadArg, "Type of input images should be CV_8UC3!");
        return;
    }

    int from_to[] = { 0,0, 1,1, 2,2 };

    // TODO convert only required images
    std::vector<Mat> src_lab(src_imgs_size);
    std::vector<Mat> l(src_imgs_size);
    std::vector<Mat> ab(src_imgs_size);
    for (int i = 0; i < src_imgs_size; i++)
    {
        src_lab[i] = Mat::zeros(srcImgs[0].size(), type);
        l[i] = Mat::zeros(srcImgs[0].size(), CV_MAKE_TYPE(depth, 1));
        ab[i] = Mat::zeros(srcImgs[0].size(), CV_MAKE_TYPE(depth, 2));
        cvtColor(srcImgs[i], src_lab[i], COLOR_LBGR2Lab);

        Mat l_ab[] = { l[i], ab[i] };
        mixChannels(&src_lab[i], 1, l_ab, 2, from_to, 3);
    }

    Mat dst_l;
    Mat dst_ab;

    fastNlMeansDenoisingMulti(
        l, dst_l, imgToDenoiseIndex, temporalWindowSize,
        h, templateWindowSize, searchWindowSize);

    fastNlMeansDenoisingMulti(
        ab, dst_ab, imgToDenoiseIndex, temporalWindowSize,
        hForColorComponents, templateWindowSize, searchWindowSize);

    Mat l_ab_denoised[] = { dst_l, dst_ab };
    Mat dst_lab(srcImgs[0].size(), srcImgs[0].type());
    mixChannels(l_ab_denoised, 2, &dst_lab, 1, from_to, 3);

    cvtColor(dst_lab, dst, COLOR_Lab2LBGR);
}