orb.cpp 38 KB
Newer Older
wester committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#include "precomp.hpp"

using namespace cv;
using namespace cv::cuda;

#if !defined (HAVE_CUDA) || defined (CUDA_DISABLER)

Ptr<cv::cuda::ORB> cv::cuda::ORB::create(int, float, int, int, int, int, int, int, int, bool) { throw_no_cuda(); return Ptr<cv::cuda::ORB>(); }

#else /* !defined (HAVE_CUDA) */

namespace cv { namespace cuda { namespace device
{
    namespace orb
    {
a  
Kai Westerkamp committed
58
        int cull_gpu(int* loc, float* response, int size, int n_points);
wester committed
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403

        void HarrisResponses_gpu(PtrStepSzb img, const short2* loc, float* response, const int npoints, int blockSize, float harris_k, cudaStream_t stream);

        void loadUMax(const int* u_max, int count);

        void IC_Angle_gpu(PtrStepSzb image, const short2* loc, float* angle, int npoints, int half_k, cudaStream_t stream);

        void computeOrbDescriptor_gpu(PtrStepb img, const short2* loc, const float* angle, const int npoints,
            const int* pattern_x, const int* pattern_y, PtrStepb desc, int dsize, int WTA_K, cudaStream_t stream);

        void mergeLocation_gpu(const short2* loc, float* x, float* y, int npoints, float scale, cudaStream_t stream);
    }
}}}

namespace
{
    const float HARRIS_K = 0.04f;
    const int DESCRIPTOR_SIZE = 32;

    const int bit_pattern_31_[256 * 4] =
    {
        8,-3, 9,5/*mean (0), correlation (0)*/,
        4,2, 7,-12/*mean (1.12461e-05), correlation (0.0437584)*/,
        -11,9, -8,2/*mean (3.37382e-05), correlation (0.0617409)*/,
        7,-12, 12,-13/*mean (5.62303e-05), correlation (0.0636977)*/,
        2,-13, 2,12/*mean (0.000134953), correlation (0.085099)*/,
        1,-7, 1,6/*mean (0.000528565), correlation (0.0857175)*/,
        -2,-10, -2,-4/*mean (0.0188821), correlation (0.0985774)*/,
        -13,-13, -11,-8/*mean (0.0363135), correlation (0.0899616)*/,
        -13,-3, -12,-9/*mean (0.121806), correlation (0.099849)*/,
        10,4, 11,9/*mean (0.122065), correlation (0.093285)*/,
        -13,-8, -8,-9/*mean (0.162787), correlation (0.0942748)*/,
        -11,7, -9,12/*mean (0.21561), correlation (0.0974438)*/,
        7,7, 12,6/*mean (0.160583), correlation (0.130064)*/,
        -4,-5, -3,0/*mean (0.228171), correlation (0.132998)*/,
        -13,2, -12,-3/*mean (0.00997526), correlation (0.145926)*/,
        -9,0, -7,5/*mean (0.198234), correlation (0.143636)*/,
        12,-6, 12,-1/*mean (0.0676226), correlation (0.16689)*/,
        -3,6, -2,12/*mean (0.166847), correlation (0.171682)*/,
        -6,-13, -4,-8/*mean (0.101215), correlation (0.179716)*/,
        11,-13, 12,-8/*mean (0.200641), correlation (0.192279)*/,
        4,7, 5,1/*mean (0.205106), correlation (0.186848)*/,
        5,-3, 10,-3/*mean (0.234908), correlation (0.192319)*/,
        3,-7, 6,12/*mean (0.0709964), correlation (0.210872)*/,
        -8,-7, -6,-2/*mean (0.0939834), correlation (0.212589)*/,
        -2,11, -1,-10/*mean (0.127778), correlation (0.20866)*/,
        -13,12, -8,10/*mean (0.14783), correlation (0.206356)*/,
        -7,3, -5,-3/*mean (0.182141), correlation (0.198942)*/,
        -4,2, -3,7/*mean (0.188237), correlation (0.21384)*/,
        -10,-12, -6,11/*mean (0.14865), correlation (0.23571)*/,
        5,-12, 6,-7/*mean (0.222312), correlation (0.23324)*/,
        5,-6, 7,-1/*mean (0.229082), correlation (0.23389)*/,
        1,0, 4,-5/*mean (0.241577), correlation (0.215286)*/,
        9,11, 11,-13/*mean (0.00338507), correlation (0.251373)*/,
        4,7, 4,12/*mean (0.131005), correlation (0.257622)*/,
        2,-1, 4,4/*mean (0.152755), correlation (0.255205)*/,
        -4,-12, -2,7/*mean (0.182771), correlation (0.244867)*/,
        -8,-5, -7,-10/*mean (0.186898), correlation (0.23901)*/,
        4,11, 9,12/*mean (0.226226), correlation (0.258255)*/,
        0,-8, 1,-13/*mean (0.0897886), correlation (0.274827)*/,
        -13,-2, -8,2/*mean (0.148774), correlation (0.28065)*/,
        -3,-2, -2,3/*mean (0.153048), correlation (0.283063)*/,
        -6,9, -4,-9/*mean (0.169523), correlation (0.278248)*/,
        8,12, 10,7/*mean (0.225337), correlation (0.282851)*/,
        0,9, 1,3/*mean (0.226687), correlation (0.278734)*/,
        7,-5, 11,-10/*mean (0.00693882), correlation (0.305161)*/,
        -13,-6, -11,0/*mean (0.0227283), correlation (0.300181)*/,
        10,7, 12,1/*mean (0.125517), correlation (0.31089)*/,
        -6,-3, -6,12/*mean (0.131748), correlation (0.312779)*/,
        10,-9, 12,-4/*mean (0.144827), correlation (0.292797)*/,
        -13,8, -8,-12/*mean (0.149202), correlation (0.308918)*/,
        -13,0, -8,-4/*mean (0.160909), correlation (0.310013)*/,
        3,3, 7,8/*mean (0.177755), correlation (0.309394)*/,
        5,7, 10,-7/*mean (0.212337), correlation (0.310315)*/,
        -1,7, 1,-12/*mean (0.214429), correlation (0.311933)*/,
        3,-10, 5,6/*mean (0.235807), correlation (0.313104)*/,
        2,-4, 3,-10/*mean (0.00494827), correlation (0.344948)*/,
        -13,0, -13,5/*mean (0.0549145), correlation (0.344675)*/,
        -13,-7, -12,12/*mean (0.103385), correlation (0.342715)*/,
        -13,3, -11,8/*mean (0.134222), correlation (0.322922)*/,
        -7,12, -4,7/*mean (0.153284), correlation (0.337061)*/,
        6,-10, 12,8/*mean (0.154881), correlation (0.329257)*/,
        -9,-1, -7,-6/*mean (0.200967), correlation (0.33312)*/,
        -2,-5, 0,12/*mean (0.201518), correlation (0.340635)*/,
        -12,5, -7,5/*mean (0.207805), correlation (0.335631)*/,
        3,-10, 8,-13/*mean (0.224438), correlation (0.34504)*/,
        -7,-7, -4,5/*mean (0.239361), correlation (0.338053)*/,
        -3,-2, -1,-7/*mean (0.240744), correlation (0.344322)*/,
        2,9, 5,-11/*mean (0.242949), correlation (0.34145)*/,
        -11,-13, -5,-13/*mean (0.244028), correlation (0.336861)*/,
        -1,6, 0,-1/*mean (0.247571), correlation (0.343684)*/,
        5,-3, 5,2/*mean (0.000697256), correlation (0.357265)*/,
        -4,-13, -4,12/*mean (0.00213675), correlation (0.373827)*/,
        -9,-6, -9,6/*mean (0.0126856), correlation (0.373938)*/,
        -12,-10, -8,-4/*mean (0.0152497), correlation (0.364237)*/,
        10,2, 12,-3/*mean (0.0299933), correlation (0.345292)*/,
        7,12, 12,12/*mean (0.0307242), correlation (0.366299)*/,
        -7,-13, -6,5/*mean (0.0534975), correlation (0.368357)*/,
        -4,9, -3,4/*mean (0.099865), correlation (0.372276)*/,
        7,-1, 12,2/*mean (0.117083), correlation (0.364529)*/,
        -7,6, -5,1/*mean (0.126125), correlation (0.369606)*/,
        -13,11, -12,5/*mean (0.130364), correlation (0.358502)*/,
        -3,7, -2,-6/*mean (0.131691), correlation (0.375531)*/,
        7,-8, 12,-7/*mean (0.160166), correlation (0.379508)*/,
        -13,-7, -11,-12/*mean (0.167848), correlation (0.353343)*/,
        1,-3, 12,12/*mean (0.183378), correlation (0.371916)*/,
        2,-6, 3,0/*mean (0.228711), correlation (0.371761)*/,
        -4,3, -2,-13/*mean (0.247211), correlation (0.364063)*/,
        -1,-13, 1,9/*mean (0.249325), correlation (0.378139)*/,
        7,1, 8,-6/*mean (0.000652272), correlation (0.411682)*/,
        1,-1, 3,12/*mean (0.00248538), correlation (0.392988)*/,
        9,1, 12,6/*mean (0.0206815), correlation (0.386106)*/,
        -1,-9, -1,3/*mean (0.0364485), correlation (0.410752)*/,
        -13,-13, -10,5/*mean (0.0376068), correlation (0.398374)*/,
        7,7, 10,12/*mean (0.0424202), correlation (0.405663)*/,
        12,-5, 12,9/*mean (0.0942645), correlation (0.410422)*/,
        6,3, 7,11/*mean (0.1074), correlation (0.413224)*/,
        5,-13, 6,10/*mean (0.109256), correlation (0.408646)*/,
        2,-12, 2,3/*mean (0.131691), correlation (0.416076)*/,
        3,8, 4,-6/*mean (0.165081), correlation (0.417569)*/,
        2,6, 12,-13/*mean (0.171874), correlation (0.408471)*/,
        9,-12, 10,3/*mean (0.175146), correlation (0.41296)*/,
        -8,4, -7,9/*mean (0.183682), correlation (0.402956)*/,
        -11,12, -4,-6/*mean (0.184672), correlation (0.416125)*/,
        1,12, 2,-8/*mean (0.191487), correlation (0.386696)*/,
        6,-9, 7,-4/*mean (0.192668), correlation (0.394771)*/,
        2,3, 3,-2/*mean (0.200157), correlation (0.408303)*/,
        6,3, 11,0/*mean (0.204588), correlation (0.411762)*/,
        3,-3, 8,-8/*mean (0.205904), correlation (0.416294)*/,
        7,8, 9,3/*mean (0.213237), correlation (0.409306)*/,
        -11,-5, -6,-4/*mean (0.243444), correlation (0.395069)*/,
        -10,11, -5,10/*mean (0.247672), correlation (0.413392)*/,
        -5,-8, -3,12/*mean (0.24774), correlation (0.411416)*/,
        -10,5, -9,0/*mean (0.00213675), correlation (0.454003)*/,
        8,-1, 12,-6/*mean (0.0293635), correlation (0.455368)*/,
        4,-6, 6,-11/*mean (0.0404971), correlation (0.457393)*/,
        -10,12, -8,7/*mean (0.0481107), correlation (0.448364)*/,
        4,-2, 6,7/*mean (0.050641), correlation (0.455019)*/,
        -2,0, -2,12/*mean (0.0525978), correlation (0.44338)*/,
        -5,-8, -5,2/*mean (0.0629667), correlation (0.457096)*/,
        7,-6, 10,12/*mean (0.0653846), correlation (0.445623)*/,
        -9,-13, -8,-8/*mean (0.0858749), correlation (0.449789)*/,
        -5,-13, -5,-2/*mean (0.122402), correlation (0.450201)*/,
        8,-8, 9,-13/*mean (0.125416), correlation (0.453224)*/,
        -9,-11, -9,0/*mean (0.130128), correlation (0.458724)*/,
        1,-8, 1,-2/*mean (0.132467), correlation (0.440133)*/,
        7,-4, 9,1/*mean (0.132692), correlation (0.454)*/,
        -2,1, -1,-4/*mean (0.135695), correlation (0.455739)*/,
        11,-6, 12,-11/*mean (0.142904), correlation (0.446114)*/,
        -12,-9, -6,4/*mean (0.146165), correlation (0.451473)*/,
        3,7, 7,12/*mean (0.147627), correlation (0.456643)*/,
        5,5, 10,8/*mean (0.152901), correlation (0.455036)*/,
        0,-4, 2,8/*mean (0.167083), correlation (0.459315)*/,
        -9,12, -5,-13/*mean (0.173234), correlation (0.454706)*/,
        0,7, 2,12/*mean (0.18312), correlation (0.433855)*/,
        -1,2, 1,7/*mean (0.185504), correlation (0.443838)*/,
        5,11, 7,-9/*mean (0.185706), correlation (0.451123)*/,
        3,5, 6,-8/*mean (0.188968), correlation (0.455808)*/,
        -13,-4, -8,9/*mean (0.191667), correlation (0.459128)*/,
        -5,9, -3,-3/*mean (0.193196), correlation (0.458364)*/,
        -4,-7, -3,-12/*mean (0.196536), correlation (0.455782)*/,
        6,5, 8,0/*mean (0.1972), correlation (0.450481)*/,
        -7,6, -6,12/*mean (0.199438), correlation (0.458156)*/,
        -13,6, -5,-2/*mean (0.211224), correlation (0.449548)*/,
        1,-10, 3,10/*mean (0.211718), correlation (0.440606)*/,
        4,1, 8,-4/*mean (0.213034), correlation (0.443177)*/,
        -2,-2, 2,-13/*mean (0.234334), correlation (0.455304)*/,
        2,-12, 12,12/*mean (0.235684), correlation (0.443436)*/,
        -2,-13, 0,-6/*mean (0.237674), correlation (0.452525)*/,
        4,1, 9,3/*mean (0.23962), correlation (0.444824)*/,
        -6,-10, -3,-5/*mean (0.248459), correlation (0.439621)*/,
        -3,-13, -1,1/*mean (0.249505), correlation (0.456666)*/,
        7,5, 12,-11/*mean (0.00119208), correlation (0.495466)*/,
        4,-2, 5,-7/*mean (0.00372245), correlation (0.484214)*/,
        -13,9, -9,-5/*mean (0.00741116), correlation (0.499854)*/,
        7,1, 8,6/*mean (0.0208952), correlation (0.499773)*/,
        7,-8, 7,6/*mean (0.0220085), correlation (0.501609)*/,
        -7,-4, -7,1/*mean (0.0233806), correlation (0.496568)*/,
        -8,11, -7,-8/*mean (0.0236505), correlation (0.489719)*/,
        -13,6, -12,-8/*mean (0.0268781), correlation (0.503487)*/,
        2,4, 3,9/*mean (0.0323324), correlation (0.501938)*/,
        10,-5, 12,3/*mean (0.0399235), correlation (0.494029)*/,
        -6,-5, -6,7/*mean (0.0420153), correlation (0.486579)*/,
        8,-3, 9,-8/*mean (0.0548021), correlation (0.484237)*/,
        2,-12, 2,8/*mean (0.0616622), correlation (0.496642)*/,
        -11,-2, -10,3/*mean (0.0627755), correlation (0.498563)*/,
        -12,-13, -7,-9/*mean (0.0829622), correlation (0.495491)*/,
        -11,0, -10,-5/*mean (0.0843342), correlation (0.487146)*/,
        5,-3, 11,8/*mean (0.0929937), correlation (0.502315)*/,
        -2,-13, -1,12/*mean (0.113327), correlation (0.48941)*/,
        -1,-8, 0,9/*mean (0.132119), correlation (0.467268)*/,
        -13,-11, -12,-5/*mean (0.136269), correlation (0.498771)*/,
        -10,-2, -10,11/*mean (0.142173), correlation (0.498714)*/,
        -3,9, -2,-13/*mean (0.144141), correlation (0.491973)*/,
        2,-3, 3,2/*mean (0.14892), correlation (0.500782)*/,
        -9,-13, -4,0/*mean (0.150371), correlation (0.498211)*/,
        -4,6, -3,-10/*mean (0.152159), correlation (0.495547)*/,
        -4,12, -2,-7/*mean (0.156152), correlation (0.496925)*/,
        -6,-11, -4,9/*mean (0.15749), correlation (0.499222)*/,
        6,-3, 6,11/*mean (0.159211), correlation (0.503821)*/,
        -13,11, -5,5/*mean (0.162427), correlation (0.501907)*/,
        11,11, 12,6/*mean (0.16652), correlation (0.497632)*/,
        7,-5, 12,-2/*mean (0.169141), correlation (0.484474)*/,
        -1,12, 0,7/*mean (0.169456), correlation (0.495339)*/,
        -4,-8, -3,-2/*mean (0.171457), correlation (0.487251)*/,
        -7,1, -6,7/*mean (0.175), correlation (0.500024)*/,
        -13,-12, -8,-13/*mean (0.175866), correlation (0.497523)*/,
        -7,-2, -6,-8/*mean (0.178273), correlation (0.501854)*/,
        -8,5, -6,-9/*mean (0.181107), correlation (0.494888)*/,
        -5,-1, -4,5/*mean (0.190227), correlation (0.482557)*/,
        -13,7, -8,10/*mean (0.196739), correlation (0.496503)*/,
        1,5, 5,-13/*mean (0.19973), correlation (0.499759)*/,
        1,0, 10,-13/*mean (0.204465), correlation (0.49873)*/,
        9,12, 10,-1/*mean (0.209334), correlation (0.49063)*/,
        5,-8, 10,-9/*mean (0.211134), correlation (0.503011)*/,
        -1,11, 1,-13/*mean (0.212), correlation (0.499414)*/,
        -9,-3, -6,2/*mean (0.212168), correlation (0.480739)*/,
        -1,-10, 1,12/*mean (0.212731), correlation (0.502523)*/,
        -13,1, -8,-10/*mean (0.21327), correlation (0.489786)*/,
        8,-11, 10,-6/*mean (0.214159), correlation (0.488246)*/,
        2,-13, 3,-6/*mean (0.216993), correlation (0.50287)*/,
        7,-13, 12,-9/*mean (0.223639), correlation (0.470502)*/,
        -10,-10, -5,-7/*mean (0.224089), correlation (0.500852)*/,
        -10,-8, -8,-13/*mean (0.228666), correlation (0.502629)*/,
        4,-6, 8,5/*mean (0.22906), correlation (0.498305)*/,
        3,12, 8,-13/*mean (0.233378), correlation (0.503825)*/,
        -4,2, -3,-3/*mean (0.234323), correlation (0.476692)*/,
        5,-13, 10,-12/*mean (0.236392), correlation (0.475462)*/,
        4,-13, 5,-1/*mean (0.236842), correlation (0.504132)*/,
        -9,9, -4,3/*mean (0.236977), correlation (0.497739)*/,
        0,3, 3,-9/*mean (0.24314), correlation (0.499398)*/,
        -12,1, -6,1/*mean (0.243297), correlation (0.489447)*/,
        3,2, 4,-8/*mean (0.00155196), correlation (0.553496)*/,
        -10,-10, -10,9/*mean (0.00239541), correlation (0.54297)*/,
        8,-13, 12,12/*mean (0.0034413), correlation (0.544361)*/,
        -8,-12, -6,-5/*mean (0.003565), correlation (0.551225)*/,
        2,2, 3,7/*mean (0.00835583), correlation (0.55285)*/,
        10,6, 11,-8/*mean (0.00885065), correlation (0.540913)*/,
        6,8, 8,-12/*mean (0.0101552), correlation (0.551085)*/,
        -7,10, -6,5/*mean (0.0102227), correlation (0.533635)*/,
        -3,-9, -3,9/*mean (0.0110211), correlation (0.543121)*/,
        -1,-13, -1,5/*mean (0.0113473), correlation (0.550173)*/,
        -3,-7, -3,4/*mean (0.0140913), correlation (0.554774)*/,
        -8,-2, -8,3/*mean (0.017049), correlation (0.55461)*/,
        4,2, 12,12/*mean (0.01778), correlation (0.546921)*/,
        2,-5, 3,11/*mean (0.0224022), correlation (0.549667)*/,
        6,-9, 11,-13/*mean (0.029161), correlation (0.546295)*/,
        3,-1, 7,12/*mean (0.0303081), correlation (0.548599)*/,
        11,-1, 12,4/*mean (0.0355151), correlation (0.523943)*/,
        -3,0, -3,6/*mean (0.0417904), correlation (0.543395)*/,
        4,-11, 4,12/*mean (0.0487292), correlation (0.542818)*/,
        2,-4, 2,1/*mean (0.0575124), correlation (0.554888)*/,
        -10,-6, -8,1/*mean (0.0594242), correlation (0.544026)*/,
        -13,7, -11,1/*mean (0.0597391), correlation (0.550524)*/,
        -13,12, -11,-13/*mean (0.0608974), correlation (0.55383)*/,
        6,0, 11,-13/*mean (0.065126), correlation (0.552006)*/,
        0,-1, 1,4/*mean (0.074224), correlation (0.546372)*/,
        -13,3, -9,-2/*mean (0.0808592), correlation (0.554875)*/,
        -9,8, -6,-3/*mean (0.0883378), correlation (0.551178)*/,
        -13,-6, -8,-2/*mean (0.0901035), correlation (0.548446)*/,
        5,-9, 8,10/*mean (0.0949843), correlation (0.554694)*/,
        2,7, 3,-9/*mean (0.0994152), correlation (0.550979)*/,
        -1,-6, -1,-1/*mean (0.10045), correlation (0.552714)*/,
        9,5, 11,-2/*mean (0.100686), correlation (0.552594)*/,
        11,-3, 12,-8/*mean (0.101091), correlation (0.532394)*/,
        3,0, 3,5/*mean (0.101147), correlation (0.525576)*/,
        -1,4, 0,10/*mean (0.105263), correlation (0.531498)*/,
        3,-6, 4,5/*mean (0.110785), correlation (0.540491)*/,
        -13,0, -10,5/*mean (0.112798), correlation (0.536582)*/,
        5,8, 12,11/*mean (0.114181), correlation (0.555793)*/,
        8,9, 9,-6/*mean (0.117431), correlation (0.553763)*/,
        7,-4, 8,-12/*mean (0.118522), correlation (0.553452)*/,
        -10,4, -10,9/*mean (0.12094), correlation (0.554785)*/,
        7,3, 12,4/*mean (0.122582), correlation (0.555825)*/,
        9,-7, 10,-2/*mean (0.124978), correlation (0.549846)*/,
        7,0, 12,-2/*mean (0.127002), correlation (0.537452)*/,
        -1,-6, 0,-11/*mean (0.127148), correlation (0.547401)*/
    };

    class ORB_Impl : public cv::cuda::ORB
    {
    public:
        ORB_Impl(int nfeatures,
                 float scaleFactor,
                 int nlevels,
                 int edgeThreshold,
                 int firstLevel,
                 int WTA_K,
                 int scoreType,
                 int patchSize,
                 int fastThreshold,
                 bool blurForDescriptor);

        virtual void detectAndCompute(InputArray _image, InputArray _mask, std::vector<KeyPoint>& keypoints, OutputArray _descriptors, bool useProvidedKeypoints);
        virtual void detectAndComputeAsync(InputArray _image, InputArray _mask, OutputArray _keypoints, OutputArray _descriptors, bool useProvidedKeypoints, Stream& stream);

        virtual void convert(InputArray _gpu_keypoints, std::vector<KeyPoint>& keypoints);

        virtual int descriptorSize() const { return kBytes; }
        virtual int descriptorType() const { return CV_8U; }
        virtual int defaultNorm() const { return NORM_HAMMING; }

        virtual void setMaxFeatures(int maxFeatures) { nFeatures_ = maxFeatures; }
        virtual int getMaxFeatures() const { return nFeatures_; }

        virtual void setScaleFactor(double scaleFactor) { scaleFactor_ = scaleFactor; }
        virtual double getScaleFactor() const { return scaleFactor_; }

        virtual void setNLevels(int nlevels) { nLevels_ = nlevels; }
        virtual int getNLevels() const { return nLevels_; }

        virtual void setEdgeThreshold(int edgeThreshold) { edgeThreshold_ = edgeThreshold; }
        virtual int getEdgeThreshold() const { return edgeThreshold_; }

        virtual void setFirstLevel(int firstLevel) { firstLevel_ = firstLevel; }
        virtual int getFirstLevel() const { return firstLevel_; }

        virtual void setWTA_K(int wta_k) { WTA_K_ = wta_k; }
        virtual int getWTA_K() const { return WTA_K_; }

        virtual void setScoreType(int scoreType) { scoreType_ = scoreType; }
        virtual int getScoreType() const { return scoreType_; }

        virtual void setPatchSize(int patchSize) { patchSize_ = patchSize; }
        virtual int getPatchSize() const { return patchSize_; }

        virtual void setFastThreshold(int fastThreshold) { fastThreshold_ = fastThreshold; }
        virtual int getFastThreshold() const { return fastThreshold_; }

        virtual void setBlurForDescriptor(bool blurForDescriptor) { blurForDescriptor_ = blurForDescriptor; }
        virtual bool getBlurForDescriptor() const { return blurForDescriptor_; }

    private:
        int nFeatures_;
        float scaleFactor_;
        int nLevels_;
        int edgeThreshold_;
        int firstLevel_;
        int WTA_K_;
        int scoreType_;
        int patchSize_;
        int fastThreshold_;
        bool blurForDescriptor_;

    private:
a  
Kai Westerkamp committed
404 405 406 407
        void buildScalePyramids(InputArray _image, InputArray _mask);
        void computeKeyPointsPyramid();
        void computeDescriptors(OutputArray _descriptors);
        void mergeKeyPoints(OutputArray _keypoints);
wester committed
408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574

    private:
        Ptr<cv::cuda::FastFeatureDetector> fastDetector_;

        //! The number of desired features per scale
        std::vector<size_t> n_features_per_level_;

        //! Points to compute BRIEF descriptors from
        GpuMat pattern_;

        std::vector<GpuMat> imagePyr_;
        std::vector<GpuMat> maskPyr_;

        GpuMat buf_;

        std::vector<GpuMat> keyPointsPyr_;
        std::vector<int> keyPointsCount_;

        Ptr<cuda::Filter> blurFilter_;

        GpuMat d_keypoints_;
    };

    static void initializeOrbPattern(const Point* pattern0, Mat& pattern, int ntuples, int tupleSize, int poolSize)
    {
        RNG rng(0x12345678);

        pattern.create(2, ntuples * tupleSize, CV_32SC1);
        pattern.setTo(Scalar::all(0));

        int* pattern_x_ptr = pattern.ptr<int>(0);
        int* pattern_y_ptr = pattern.ptr<int>(1);

        for (int i = 0; i < ntuples; i++)
        {
            for (int k = 0; k < tupleSize; k++)
            {
                for(;;)
                {
                    int idx = rng.uniform(0, poolSize);
                    Point pt = pattern0[idx];

                    int k1;
                    for (k1 = 0; k1 < k; k1++)
                        if (pattern_x_ptr[tupleSize * i + k1] == pt.x && pattern_y_ptr[tupleSize * i + k1] == pt.y)
                            break;

                    if (k1 == k)
                    {
                        pattern_x_ptr[tupleSize * i + k] = pt.x;
                        pattern_y_ptr[tupleSize * i + k] = pt.y;
                        break;
                    }
                }
            }
        }
    }

    static void makeRandomPattern(int patchSize, Point* pattern, int npoints)
    {
        // we always start with a fixed seed,
        // to make patterns the same on each run
        RNG rng(0x34985739);

        for (int i = 0; i < npoints; i++)
        {
            pattern[i].x = rng.uniform(-patchSize / 2, patchSize / 2 + 1);
            pattern[i].y = rng.uniform(-patchSize / 2, patchSize / 2 + 1);
        }
    }

    ORB_Impl::ORB_Impl(int nFeatures,
                       float scaleFactor,
                       int nLevels,
                       int edgeThreshold,
                       int firstLevel,
                       int WTA_K,
                       int scoreType,
                       int patchSize,
                       int fastThreshold,
                       bool blurForDescriptor) :
        nFeatures_(nFeatures),
        scaleFactor_(scaleFactor),
        nLevels_(nLevels),
        edgeThreshold_(edgeThreshold),
        firstLevel_(firstLevel),
        WTA_K_(WTA_K),
        scoreType_(scoreType),
        patchSize_(patchSize),
        fastThreshold_(fastThreshold),
        blurForDescriptor_(blurForDescriptor)
    {
        CV_Assert( patchSize_ >= 2 );
        CV_Assert( WTA_K_ == 2 || WTA_K_ == 3 || WTA_K_ == 4 );

        fastDetector_ = cuda::FastFeatureDetector::create(fastThreshold_);

        // fill the extractors and descriptors for the corresponding scales
        float factor = 1.0f / scaleFactor_;
        float n_desired_features_per_scale = nFeatures_ * (1.0f - factor) / (1.0f - std::pow(factor, nLevels_));

        n_features_per_level_.resize(nLevels_);
        size_t sum_n_features = 0;
        for (int level = 0; level < nLevels_ - 1; ++level)
        {
            n_features_per_level_[level] = cvRound(n_desired_features_per_scale);
            sum_n_features += n_features_per_level_[level];
            n_desired_features_per_scale *= factor;
        }
        n_features_per_level_[nLevels_ - 1] = nFeatures - sum_n_features;

        // pre-compute the end of a row in a circular patch
        int half_patch_size = patchSize_ / 2;
        std::vector<int> u_max(half_patch_size + 2);
        for (int v = 0; v <= half_patch_size * std::sqrt(2.f) / 2 + 1; ++v)
        {
            u_max[v] = cvRound(std::sqrt(static_cast<float>(half_patch_size * half_patch_size - v * v)));
        }

        // Make sure we are symmetric
        for (int v = half_patch_size, v_0 = 0; v >= half_patch_size * std::sqrt(2.f) / 2; --v)
        {
            while (u_max[v_0] == u_max[v_0 + 1])
                ++v_0;
            u_max[v] = v_0;
            ++v_0;
        }
        CV_Assert( u_max.size() < 32 );
        cv::cuda::device::orb::loadUMax(&u_max[0], static_cast<int>(u_max.size()));

        // Calc pattern
        const int npoints = 512;
        Point pattern_buf[npoints];
        const Point* pattern0 = (const Point*)bit_pattern_31_;
        if (patchSize_ != 31)
        {
            pattern0 = pattern_buf;
            makeRandomPattern(patchSize_, pattern_buf, npoints);
        }

        Mat h_pattern;
        if (WTA_K_ == 2)
        {
            h_pattern.create(2, npoints, CV_32SC1);

            int* pattern_x_ptr = h_pattern.ptr<int>(0);
            int* pattern_y_ptr = h_pattern.ptr<int>(1);

            for (int i = 0; i < npoints; ++i)
            {
                pattern_x_ptr[i] = pattern0[i].x;
                pattern_y_ptr[i] = pattern0[i].y;
            }
        }
        else
        {
            int ntuples = descriptorSize() * 4;
            initializeOrbPattern(pattern0, h_pattern, ntuples, WTA_K_, npoints);
        }

        pattern_.upload(h_pattern);

        blurFilter_ = cuda::createGaussianFilter(CV_8UC1, -1, Size(7, 7), 2, 2, BORDER_REFLECT_101);
    }

    void ORB_Impl::detectAndCompute(InputArray _image, InputArray _mask, std::vector<KeyPoint>& keypoints, OutputArray _descriptors, bool useProvidedKeypoints)
    {
a  
Kai Westerkamp committed
575
        CV_Assert( useProvidedKeypoints == false );
wester committed
576

a  
Kai Westerkamp committed
577 578
        detectAndComputeAsync(_image, _mask, d_keypoints_, _descriptors, false, Stream::Null());
        convert(d_keypoints_, keypoints);
wester committed
579 580 581 582
    }

    void ORB_Impl::detectAndComputeAsync(InputArray _image, InputArray _mask, OutputArray _keypoints, OutputArray _descriptors, bool useProvidedKeypoints, Stream& stream)
    {
a  
Kai Westerkamp committed
583 584 585 586
        CV_Assert( useProvidedKeypoints == false );

        buildScalePyramids(_image, _mask);
        computeKeyPointsPyramid();
wester committed
587 588
        if (_descriptors.needed())
        {
a  
Kai Westerkamp committed
589
            computeDescriptors(_descriptors);
wester committed
590
        }
a  
Kai Westerkamp committed
591 592 593 594 595 596
        mergeKeyPoints(_keypoints);
    }

    static float getScale(float scaleFactor, int firstLevel, int level)
    {
        return pow(scaleFactor, level - firstLevel);
wester committed
597 598
    }

a  
Kai Westerkamp committed
599
    void ORB_Impl::buildScalePyramids(InputArray _image, InputArray _mask)
wester committed
600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624
    {
        const GpuMat image = _image.getGpuMat();
        const GpuMat mask = _mask.getGpuMat();

        CV_Assert( image.type() == CV_8UC1 );
        CV_Assert( mask.empty() || (mask.type() == CV_8UC1 && mask.size() == image.size()) );

        imagePyr_.resize(nLevels_);
        maskPyr_.resize(nLevels_);

        for (int level = 0; level < nLevels_; ++level)
        {
            float scale = 1.0f / getScale(scaleFactor_, firstLevel_, level);

            Size sz(cvRound(image.cols * scale), cvRound(image.rows * scale));

            ensureSizeIsEnough(sz, image.type(), imagePyr_[level]);
            ensureSizeIsEnough(sz, CV_8UC1, maskPyr_[level]);
            maskPyr_[level].setTo(Scalar::all(255));

            // Compute the resized image
            if (level != firstLevel_)
            {
                if (level < firstLevel_)
                {
a  
Kai Westerkamp committed
625
                    cuda::resize(image, imagePyr_[level], sz, 0, 0, INTER_LINEAR);
wester committed
626 627

                    if (!mask.empty())
a  
Kai Westerkamp committed
628
                        cuda::resize(mask, maskPyr_[level], sz, 0, 0, INTER_LINEAR);
wester committed
629 630 631
                }
                else
                {
a  
Kai Westerkamp committed
632
                    cuda::resize(imagePyr_[level - 1], imagePyr_[level], sz, 0, 0, INTER_LINEAR);
wester committed
633 634 635

                    if (!mask.empty())
                    {
a  
Kai Westerkamp committed
636 637
                        cuda::resize(maskPyr_[level - 1], maskPyr_[level], sz, 0, 0, INTER_LINEAR);
                        cuda::threshold(maskPyr_[level], maskPyr_[level], 254, 0, THRESH_TOZERO);
wester committed
638 639 640 641 642
                    }
                }
            }
            else
            {
a  
Kai Westerkamp committed
643
                image.copyTo(imagePyr_[level]);
wester committed
644 645

                if (!mask.empty())
a  
Kai Westerkamp committed
646
                    mask.copyTo(maskPyr_[level]);
wester committed
647 648 649 650
            }

            // Filter keypoints by image border
            ensureSizeIsEnough(sz, CV_8UC1, buf_);
a  
Kai Westerkamp committed
651
            buf_.setTo(Scalar::all(0));
wester committed
652
            Rect inner(edgeThreshold_, edgeThreshold_, sz.width - 2 * edgeThreshold_, sz.height - 2 * edgeThreshold_);
a  
Kai Westerkamp committed
653
            buf_(inner).setTo(Scalar::all(255));
wester committed
654

a  
Kai Westerkamp committed
655
            cuda::bitwise_and(maskPyr_[level], buf_, maskPyr_[level]);
wester committed
656 657 658 659
        }
    }

    // takes keypoints and culls them by the response
a  
Kai Westerkamp committed
660
    static void cull(GpuMat& keypoints, int& count, int n_points)
wester committed
661 662 663 664 665 666 667 668 669 670 671 672
    {
        using namespace cv::cuda::device::orb;

        //this is only necessary if the keypoints size is greater than the number of desired points.
        if (count > n_points)
        {
            if (n_points == 0)
            {
                keypoints.release();
                return;
            }

a  
Kai Westerkamp committed
673
            count = cull_gpu(keypoints.ptr<int>(cuda::FastFeatureDetector::LOCATION_ROW), keypoints.ptr<float>(cuda::FastFeatureDetector::RESPONSE_ROW), count, n_points);
wester committed
674 675 676
        }
    }

a  
Kai Westerkamp committed
677
    void ORB_Impl::computeKeyPointsPyramid()
wester committed
678 679 680 681 682 683 684 685 686 687 688 689 690 691 692
    {
        using namespace cv::cuda::device::orb;

        int half_patch_size = patchSize_ / 2;

        keyPointsPyr_.resize(nLevels_);
        keyPointsCount_.resize(nLevels_);

        fastDetector_->setThreshold(fastThreshold_);

        for (int level = 0; level < nLevels_; ++level)
        {
            fastDetector_->setMaxNumPoints(0.05 * imagePyr_[level].size().area());

            GpuMat fastKpRange;
a  
Kai Westerkamp committed
693
            fastDetector_->detectAsync(imagePyr_[level], fastKpRange, maskPyr_[level], Stream::Null());
wester committed
694 695 696 697 698 699 700

            keyPointsCount_[level] = fastKpRange.cols;

            if (keyPointsCount_[level] == 0)
                continue;

            ensureSizeIsEnough(3, keyPointsCount_[level], fastKpRange.type(), keyPointsPyr_[level]);
a  
Kai Westerkamp committed
701
            fastKpRange.copyTo(keyPointsPyr_[level].rowRange(0, 2));
wester committed
702 703 704 705 706 707

            const int n_features = static_cast<int>(n_features_per_level_[level]);

            if (scoreType_ == ORB::HARRIS_SCORE)
            {
                // Keep more points than necessary as FAST does not give amazing corners
a  
Kai Westerkamp committed
708
                cull(keyPointsPyr_[level], keyPointsCount_[level], 2 * n_features);
wester committed
709 710

                // Compute the Harris cornerness (better scoring than FAST)
a  
Kai Westerkamp committed
711
                HarrisResponses_gpu(imagePyr_[level], keyPointsPyr_[level].ptr<short2>(0), keyPointsPyr_[level].ptr<float>(1), keyPointsCount_[level], 7, HARRIS_K, 0);
wester committed
712 713 714
            }

            //cull to the final desired level, using the new Harris scores or the original FAST scores.
a  
Kai Westerkamp committed
715
            cull(keyPointsPyr_[level], keyPointsCount_[level], n_features);
wester committed
716 717

            // Compute orientation
a  
Kai Westerkamp committed
718
            IC_Angle_gpu(imagePyr_[level], keyPointsPyr_[level].ptr<short2>(0), keyPointsPyr_[level].ptr<float>(2), keyPointsCount_[level], half_patch_size, 0);
wester committed
719 720 721
        }
    }

a  
Kai Westerkamp committed
722
    void ORB_Impl::computeDescriptors(OutputArray _descriptors)
wester committed
723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752
    {
        using namespace cv::cuda::device::orb;

        int nAllkeypoints = 0;

        for (int level = 0; level < nLevels_; ++level)
            nAllkeypoints += keyPointsCount_[level];

        if (nAllkeypoints == 0)
        {
            _descriptors.release();
            return;
        }

        ensureSizeIsEnough(nAllkeypoints, descriptorSize(), CV_8UC1, _descriptors);
        GpuMat descriptors = _descriptors.getGpuMat();

        int offset = 0;

        for (int level = 0; level < nLevels_; ++level)
        {
            if (keyPointsCount_[level] == 0)
                continue;

            GpuMat descRange = descriptors.rowRange(offset, offset + keyPointsCount_[level]);

            if (blurForDescriptor_)
            {
                // preprocess the resized image
                ensureSizeIsEnough(imagePyr_[level].size(), imagePyr_[level].type(), buf_);
a  
Kai Westerkamp committed
753
                blurFilter_->apply(imagePyr_[level], buf_);
wester committed
754 755 756
            }

            computeOrbDescriptor_gpu(blurForDescriptor_ ? buf_ : imagePyr_[level], keyPointsPyr_[level].ptr<short2>(0), keyPointsPyr_[level].ptr<float>(2),
a  
Kai Westerkamp committed
757
                keyPointsCount_[level], pattern_.ptr<int>(0), pattern_.ptr<int>(1), descRange, descriptorSize(), WTA_K_, 0);
wester committed
758 759 760 761 762

            offset += keyPointsCount_[level];
        }
    }

a  
Kai Westerkamp committed
763
    void ORB_Impl::mergeKeyPoints(OutputArray _keypoints)
wester committed
764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793
    {
        using namespace cv::cuda::device::orb;

        int nAllkeypoints = 0;

        for (int level = 0; level < nLevels_; ++level)
            nAllkeypoints += keyPointsCount_[level];

        if (nAllkeypoints == 0)
        {
            _keypoints.release();
            return;
        }

        ensureSizeIsEnough(ROWS_COUNT, nAllkeypoints, CV_32FC1, _keypoints);
        GpuMat& keypoints = _keypoints.getGpuMatRef();

        int offset = 0;

        for (int level = 0; level < nLevels_; ++level)
        {
            if (keyPointsCount_[level] == 0)
                continue;

            float sf = getScale(scaleFactor_, firstLevel_, level);

            GpuMat keyPointsRange = keypoints.colRange(offset, offset + keyPointsCount_[level]);

            float locScale = level != firstLevel_ ? sf : 1.0f;

a  
Kai Westerkamp committed
794
            mergeLocation_gpu(keyPointsPyr_[level].ptr<short2>(0), keyPointsRange.ptr<float>(0), keyPointsRange.ptr<float>(1), keyPointsCount_[level], locScale, 0);
wester committed
795 796

            GpuMat range = keyPointsRange.rowRange(2, 4);
a  
Kai Westerkamp committed
797
            keyPointsPyr_[level](Range(1, 3), Range(0, keyPointsCount_[level])).copyTo(range);
wester committed
798

a  
Kai Westerkamp committed
799 800
            keyPointsRange.row(4).setTo(Scalar::all(level));
            keyPointsRange.row(5).setTo(Scalar::all(patchSize_ * sf));
wester committed
801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868

            offset += keyPointsCount_[level];
        }
    }

    void ORB_Impl::convert(InputArray _gpu_keypoints, std::vector<KeyPoint>& keypoints)
    {
        if (_gpu_keypoints.empty())
        {
            keypoints.clear();
            return;
        }

        Mat h_keypoints;
        if (_gpu_keypoints.kind() == _InputArray::CUDA_GPU_MAT)
        {
            _gpu_keypoints.getGpuMat().download(h_keypoints);
        }
        else
        {
            h_keypoints = _gpu_keypoints.getMat();
        }

        CV_Assert( h_keypoints.rows == ROWS_COUNT );
        CV_Assert( h_keypoints.type() == CV_32FC1 );

        const int npoints = h_keypoints.cols;

        keypoints.resize(npoints);

        const float* x_ptr = h_keypoints.ptr<float>(X_ROW);
        const float* y_ptr = h_keypoints.ptr<float>(Y_ROW);
        const float* response_ptr = h_keypoints.ptr<float>(RESPONSE_ROW);
        const float* angle_ptr = h_keypoints.ptr<float>(ANGLE_ROW);
        const float* octave_ptr = h_keypoints.ptr<float>(OCTAVE_ROW);
        const float* size_ptr = h_keypoints.ptr<float>(SIZE_ROW);

        for (int i = 0; i < npoints; ++i)
        {
            KeyPoint kp;

            kp.pt.x = x_ptr[i];
            kp.pt.y = y_ptr[i];
            kp.response = response_ptr[i];
            kp.angle = angle_ptr[i];
            kp.octave = static_cast<int>(octave_ptr[i]);
            kp.size = size_ptr[i];

            keypoints[i] = kp;
        }
    }
}

Ptr<cv::cuda::ORB> cv::cuda::ORB::create(int nfeatures,
                                         float scaleFactor,
                                         int nlevels,
                                         int edgeThreshold,
                                         int firstLevel,
                                         int WTA_K,
                                         int scoreType,
                                         int patchSize,
                                         int fastThreshold,
                                         bool blurForDescriptor)
{
    return makePtr<ORB_Impl>(nfeatures, scaleFactor, nlevels, edgeThreshold, firstLevel, WTA_K, scoreType, patchSize, fastThreshold, blurForDescriptor);
}

#endif /* !defined (HAVE_CUDA) */