templmatch.cpp 13.4 KB
Newer Older
wester committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                        Intel License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of Intel Corporation may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#include "precomp.hpp"

namespace cv
{

void crossCorr( const Mat& img, const Mat& _templ, Mat& corr,
                Size corrsize, int ctype,
                Point anchor, double delta, int borderType )
{
    const double blockScale = 4.5;
    const int minBlockSize = 256;
    std::vector<uchar> buf;

    Mat templ = _templ;
    int depth = img.depth(), cn = img.channels();
    int tdepth = templ.depth(), tcn = templ.channels();
    int cdepth = CV_MAT_DEPTH(ctype), ccn = CV_MAT_CN(ctype);

    CV_Assert( img.dims <= 2 && templ.dims <= 2 && corr.dims <= 2 );

    if( depth != tdepth && tdepth != std::max(CV_32F, depth) )
    {
        _templ.convertTo(templ, std::max(CV_32F, depth));
        tdepth = templ.depth();
    }

    CV_Assert( depth == tdepth || tdepth == CV_32F);
    CV_Assert( corrsize.height <= img.rows + templ.rows - 1 &&
               corrsize.width <= img.cols + templ.cols - 1 );

    CV_Assert( ccn == 1 || delta == 0 );

    corr.create(corrsize, ctype);

    int maxDepth = depth > CV_8S ? CV_64F : std::max(std::max(CV_32F, tdepth), cdepth);
    Size blocksize, dftsize;

    blocksize.width = cvRound(templ.cols*blockScale);
    blocksize.width = std::max( blocksize.width, minBlockSize - templ.cols + 1 );
    blocksize.width = std::min( blocksize.width, corr.cols );
    blocksize.height = cvRound(templ.rows*blockScale);
    blocksize.height = std::max( blocksize.height, minBlockSize - templ.rows + 1 );
    blocksize.height = std::min( blocksize.height, corr.rows );

    dftsize.width = std::max(getOptimalDFTSize(blocksize.width + templ.cols - 1), 2);
    dftsize.height = getOptimalDFTSize(blocksize.height + templ.rows - 1);
    if( dftsize.width <= 0 || dftsize.height <= 0 )
        CV_Error( CV_StsOutOfRange, "the input arrays are too big" );

    // recompute block size
    blocksize.width = dftsize.width - templ.cols + 1;
    blocksize.width = MIN( blocksize.width, corr.cols );
    blocksize.height = dftsize.height - templ.rows + 1;
    blocksize.height = MIN( blocksize.height, corr.rows );

    Mat dftTempl( dftsize.height*tcn, dftsize.width, maxDepth );
    Mat dftImg( dftsize, maxDepth );

    int i, k, bufSize = 0;
    if( tcn > 1 && tdepth != maxDepth )
        bufSize = templ.cols*templ.rows*CV_ELEM_SIZE(tdepth);

    if( cn > 1 && depth != maxDepth )
        bufSize = std::max( bufSize, (blocksize.width + templ.cols - 1)*
            (blocksize.height + templ.rows - 1)*CV_ELEM_SIZE(depth));

    if( (ccn > 1 || cn > 1) && cdepth != maxDepth )
        bufSize = std::max( bufSize, blocksize.width*blocksize.height*CV_ELEM_SIZE(cdepth));

    buf.resize(bufSize);

    // compute DFT of each template plane
    for( k = 0; k < tcn; k++ )
    {
        int yofs = k*dftsize.height;
        Mat src = templ;
        Mat dst(dftTempl, Rect(0, yofs, dftsize.width, dftsize.height));
        Mat dst1(dftTempl, Rect(0, yofs, templ.cols, templ.rows));

        if( tcn > 1 )
        {
            src = tdepth == maxDepth ? dst1 : Mat(templ.size(), tdepth, &buf[0]);
            int pairs[] = {k, 0};
            mixChannels(&templ, 1, &src, 1, pairs, 1);
        }

        if( dst1.data != src.data )
            src.convertTo(dst1, dst1.depth());

        if( dst.cols > templ.cols )
        {
            Mat part(dst, Range(0, templ.rows), Range(templ.cols, dst.cols));
            part = Scalar::all(0);
        }
a  
Kai Westerkamp committed
136
        dft(dst, dst, 0, templ.rows);
wester committed
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
    }

    int tileCountX = (corr.cols + blocksize.width - 1)/blocksize.width;
    int tileCountY = (corr.rows + blocksize.height - 1)/blocksize.height;
    int tileCount = tileCountX * tileCountY;

    Size wholeSize = img.size();
    Point roiofs(0,0);
    Mat img0 = img;

    if( !(borderType & BORDER_ISOLATED) )
    {
        img.locateROI(wholeSize, roiofs);
        img0.adjustROI(roiofs.y, wholeSize.height-img.rows-roiofs.y,
                       roiofs.x, wholeSize.width-img.cols-roiofs.x);
    }
    borderType |= BORDER_ISOLATED;

    // calculate correlation by blocks
    for( i = 0; i < tileCount; i++ )
    {
        int x = (i%tileCountX)*blocksize.width;
        int y = (i/tileCountX)*blocksize.height;

        Size bsz(std::min(blocksize.width, corr.cols - x),
                 std::min(blocksize.height, corr.rows - y));
        Size dsz(bsz.width + templ.cols - 1, bsz.height + templ.rows - 1);
        int x0 = x - anchor.x + roiofs.x, y0 = y - anchor.y + roiofs.y;
        int x1 = std::max(0, x0), y1 = std::max(0, y0);
        int x2 = std::min(img0.cols, x0 + dsz.width);
        int y2 = std::min(img0.rows, y0 + dsz.height);
        Mat src0(img0, Range(y1, y2), Range(x1, x2));
        Mat dst(dftImg, Rect(0, 0, dsz.width, dsz.height));
        Mat dst1(dftImg, Rect(x1-x0, y1-y0, x2-x1, y2-y1));
        Mat cdst(corr, Rect(x, y, bsz.width, bsz.height));

        for( k = 0; k < cn; k++ )
        {
            Mat src = src0;
            dftImg = Scalar::all(0);

            if( cn > 1 )
            {
                src = depth == maxDepth ? dst1 : Mat(y2-y1, x2-x1, depth, &buf[0]);
                int pairs[] = {k, 0};
                mixChannels(&src0, 1, &src, 1, pairs, 1);
            }

            if( dst1.data != src.data )
                src.convertTo(dst1, dst1.depth());

            if( x2 - x1 < dsz.width || y2 - y1 < dsz.height )
                copyMakeBorder(dst1, dst, y1-y0, dst.rows-dst1.rows-(y1-y0),
                               x1-x0, dst.cols-dst1.cols-(x1-x0), borderType);

a  
Kai Westerkamp committed
192
            dft( dftImg, dftImg, 0, dsz.height );
wester committed
193 194 195
            Mat dftTempl1(dftTempl, Rect(0, tcn > 1 ? k*dftsize.height : 0,
                                         dftsize.width, dftsize.height));
            mulSpectrums(dftImg, dftTempl1, dftImg, 0, true);
a  
Kai Westerkamp committed
196
            dft( dftImg, dftImg, DFT_INVERSE + DFT_SCALE, bsz.height );
wester committed
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229

            src = dftImg(Rect(0, 0, bsz.width, bsz.height));

            if( ccn > 1 )
            {
                if( cdepth != maxDepth )
                {
                    Mat plane(bsz, cdepth, &buf[0]);
                    src.convertTo(plane, cdepth, 1, delta);
                    src = plane;
                }
                int pairs[] = {0, k};
                mixChannels(&src, 1, &cdst, 1, pairs, 1);
            }
            else
            {
                if( k == 0 )
                    src.convertTo(cdst, cdepth, 1, delta);
                else
                {
                    if( maxDepth != cdepth )
                    {
                        Mat plane(bsz, cdepth, &buf[0]);
                        src.convertTo(plane, cdepth);
                        src = plane;
                    }
                    add(src, cdst, cdst);
                }
            }
        }
    }
}

wester committed
230 231 232 233 234
}

/*****************************************************************************************/

void cv::matchTemplate( InputArray _img, InputArray _templ, OutputArray _result, int method )
wester committed
235 236 237
{
    CV_Assert( CV_TM_SQDIFF <= method && method <= CV_TM_CCOEFF_NORMED );

wester committed
238 239 240 241 242
    int numType = method == CV_TM_CCORR || method == CV_TM_CCORR_NORMED ? 0 :
                  method == CV_TM_CCOEFF || method == CV_TM_CCOEFF_NORMED ? 1 : 2;
    bool isNormed = method == CV_TM_CCORR_NORMED ||
                    method == CV_TM_SQDIFF_NORMED ||
                    method == CV_TM_CCOEFF_NORMED;
wester committed
243

wester committed
244 245 246
    Mat img = _img.getMat(), templ = _templ.getMat();
    if( img.rows < templ.rows || img.cols < templ.cols )
        std::swap(img, templ);
wester committed
247

wester committed
248 249
    CV_Assert( (img.depth() == CV_8U || img.depth() == CV_32F) &&
               img.type() == templ.type() );
wester committed
250

wester committed
251
    CV_Assert( img.rows >= templ.rows && img.cols >= templ.cols);
wester committed
252 253 254 255 256

    Size corrSize(img.cols - templ.cols + 1, img.rows - templ.rows + 1);
    _result.create(corrSize, CV_32F);
    Mat result = _result.getMat();

wester committed
257 258 259 260
#ifdef HAVE_TEGRA_OPTIMIZATION
    if (tegra::matchTemplate(img, templ, result, method))
        return;
#endif
a  
Kai Westerkamp committed
261

wester committed
262 263
    int cn = img.channels();
    crossCorr( img, templ, result, result.size(), result.type(), Point(0,0), 0, 0);
wester committed
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284

    if( method == CV_TM_CCORR )
        return;

    double invArea = 1./((double)templ.rows * templ.cols);

    Mat sum, sqsum;
    Scalar templMean, templSdv;
    double *q0 = 0, *q1 = 0, *q2 = 0, *q3 = 0;
    double templNorm = 0, templSum2 = 0;

    if( method == CV_TM_CCOEFF )
    {
        integral(img, sum, CV_64F);
        templMean = mean(templ);
    }
    else
    {
        integral(img, sum, sqsum, CV_64F);
        meanStdDev( templ, templMean, templSdv );

wester committed
285 286
        templNorm = CV_SQR(templSdv[0]) + CV_SQR(templSdv[1]) +
                    CV_SQR(templSdv[2]) + CV_SQR(templSdv[3]);
wester committed
287 288 289 290 291 292 293

        if( templNorm < DBL_EPSILON && method == CV_TM_CCOEFF_NORMED )
        {
            result = Scalar::all(1);
            return;
        }

wester committed
294 295 296
        templSum2 = templNorm +
                     CV_SQR(templMean[0]) + CV_SQR(templMean[1]) +
                     CV_SQR(templMean[2]) + CV_SQR(templMean[3]);
wester committed
297 298 299 300 301 302 303 304

        if( numType != 1 )
        {
            templMean = Scalar::all(0);
            templNorm = templSum2;
        }

        templSum2 /= invArea;
wester committed
305 306
        templNorm = sqrt(templNorm);
        templNorm /= sqrt(invArea); // care of accuracy here
wester committed
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325

        q0 = (double*)sqsum.data;
        q1 = q0 + templ.cols*cn;
        q2 = (double*)(sqsum.data + templ.rows*sqsum.step);
        q3 = q2 + templ.cols*cn;
    }

    double* p0 = (double*)sum.data;
    double* p1 = p0 + templ.cols*cn;
    double* p2 = (double*)(sum.data + templ.rows*sum.step);
    double* p3 = p2 + templ.cols*cn;

    int sumstep = sum.data ? (int)(sum.step / sizeof(double)) : 0;
    int sqstep = sqsum.data ? (int)(sqsum.step / sizeof(double)) : 0;

    int i, j, k;

    for( i = 0; i < result.rows; i++ )
    {
wester committed
326
        float* rrow = (float*)(result.data + i*result.step);
wester committed
327 328 329 330 331 332 333 334 335 336 337 338 339
        int idx = i * sumstep;
        int idx2 = i * sqstep;

        for( j = 0; j < result.cols; j++, idx += cn, idx2 += cn )
        {
            double num = rrow[j], t;
            double wndMean2 = 0, wndSum2 = 0;

            if( numType == 1 )
            {
                for( k = 0; k < cn; k++ )
                {
                    t = p0[idx+k] - p1[idx+k] - p2[idx+k] + p3[idx+k];
wester committed
340
                    wndMean2 += CV_SQR(t);
wester committed
341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
                    num -= t*templMean[k];
                }

                wndMean2 *= invArea;
            }

            if( isNormed || numType == 2 )
            {
                for( k = 0; k < cn; k++ )
                {
                    t = q0[idx2+k] - q1[idx2+k] - q2[idx2+k] + q3[idx2+k];
                    wndSum2 += t;
                }

                if( numType == 2 )
                {
                    num = wndSum2 - 2*num + templSum2;
                    num = MAX(num, 0.);
                }
            }

            if( isNormed )
            {
wester committed
364
                t = sqrt(MAX(wndSum2 - wndMean2,0))*templNorm;
wester committed
365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
                if( fabs(num) < t )
                    num /= t;
                else if( fabs(num) < t*1.125 )
                    num = num > 0 ? 1 : -1;
                else
                    num = method != CV_TM_SQDIFF_NORMED ? 0 : 1;
            }

            rrow[j] = (float)num;
        }
    }
}


CV_IMPL void
cvMatchTemplate( const CvArr* _img, const CvArr* _templ, CvArr* _result, int method )
{
    cv::Mat img = cv::cvarrToMat(_img), templ = cv::cvarrToMat(_templ),
        result = cv::cvarrToMat(_result);
    CV_Assert( result.size() == cv::Size(std::abs(img.cols - templ.cols) + 1,
                                         std::abs(img.rows - templ.rows) + 1) &&
              result.type() == CV_32F );
    matchTemplate(img, templ, result, method);
}

/* End of file. */