ml.hpp 76.9 KB
Newer Older
wester committed
1 2 3 4 5 6 7 8 9
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
wester committed
10
//                        Intel License Agreement
wester committed
11
//
wester committed
12
// Copyright (C) 2000, Intel Corporation, all rights reserved.
wester committed
13 14 15 16 17 18 19 20 21 22 23 24
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
wester committed
25
//   * The name of Intel Corporation may not be used to endorse or promote products
wester committed
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

wester committed
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151
#ifndef __OPENCV_ML_HPP__
#define __OPENCV_ML_HPP__

#include "opencv2/core/core.hpp"
#include <limits.h>

#ifdef __cplusplus

#if defined(__clang__)
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Woverloaded-virtual"
#endif


#include <map>
#include <string>
#include <iostream>

// Apple defines a check() macro somewhere in the debug headers
// that interferes with a method definiton in this header
#undef check

/****************************************************************************************\
*                               Main struct definitions                                  *
\****************************************************************************************/

/* log(2*PI) */
#define CV_LOG2PI (1.8378770664093454835606594728112)

/* columns of <trainData> matrix are training samples */
#define CV_COL_SAMPLE 0

/* rows of <trainData> matrix are training samples */
#define CV_ROW_SAMPLE 1

#define CV_IS_ROW_SAMPLE(flags) ((flags) & CV_ROW_SAMPLE)

struct CvVectors
{
    int type;
    int dims, count;
    CvVectors* next;
    union
    {
        uchar** ptr;
        float** fl;
        double** db;
    } data;
};

#if 0
/* A structure, representing the lattice range of statmodel parameters.
   It is used for optimizing statmodel parameters by cross-validation method.
   The lattice is logarithmic, so <step> must be greater then 1. */
typedef struct CvParamLattice
{
    double min_val;
    double max_val;
    double step;
}
CvParamLattice;

CV_INLINE CvParamLattice cvParamLattice( double min_val, double max_val,
                                         double log_step )
{
    CvParamLattice pl;
    pl.min_val = MIN( min_val, max_val );
    pl.max_val = MAX( min_val, max_val );
    pl.step = MAX( log_step, 1. );
    return pl;
}

CV_INLINE CvParamLattice cvDefaultParamLattice( void )
{
    CvParamLattice pl = {0,0,0};
    return pl;
}
#endif

/* Variable type */
#define CV_VAR_NUMERICAL    0
#define CV_VAR_ORDERED      0
#define CV_VAR_CATEGORICAL  1

#define CV_TYPE_NAME_ML_SVM         "opencv-ml-svm"
#define CV_TYPE_NAME_ML_KNN         "opencv-ml-knn"
#define CV_TYPE_NAME_ML_NBAYES      "opencv-ml-bayesian"
#define CV_TYPE_NAME_ML_EM          "opencv-ml-em"
#define CV_TYPE_NAME_ML_BOOSTING    "opencv-ml-boost-tree"
#define CV_TYPE_NAME_ML_TREE        "opencv-ml-tree"
#define CV_TYPE_NAME_ML_ANN_MLP     "opencv-ml-ann-mlp"
#define CV_TYPE_NAME_ML_CNN         "opencv-ml-cnn"
#define CV_TYPE_NAME_ML_RTREES      "opencv-ml-random-trees"
#define CV_TYPE_NAME_ML_ERTREES     "opencv-ml-extremely-randomized-trees"
#define CV_TYPE_NAME_ML_GBT         "opencv-ml-gradient-boosting-trees"

#define CV_TRAIN_ERROR  0
#define CV_TEST_ERROR   1

class CV_EXPORTS_W CvStatModel
{
public:
    CvStatModel();
    virtual ~CvStatModel();

    virtual void clear();

    CV_WRAP virtual void save( const char* filename, const char* name=0 ) const;
    CV_WRAP virtual void load( const char* filename, const char* name=0 );

    virtual void write( CvFileStorage* storage, const char* name ) const;
    virtual void read( CvFileStorage* storage, CvFileNode* node );

protected:
    const char* default_model_name;
};

/****************************************************************************************\
*                                 Normal Bayes Classifier                                *
\****************************************************************************************/

/* The structure, representing the grid range of statmodel parameters.
   It is used for optimizing statmodel accuracy by varying model parameters,
   the accuracy estimate being computed by cross-validation.
   The grid is logarithmic, so <step> must be greater then 1. */

class CvMLData;

struct CV_EXPORTS_W_MAP CvParamGrid
{
    // SVM params type
    enum { SVM_C=0, SVM_GAMMA=1, SVM_P=2, SVM_NU=3, SVM_COEF=4, SVM_DEGREE=5 };

    CvParamGrid()
    {
        min_val = max_val = step = 0;
    }

    CvParamGrid( double min_val, double max_val, double log_step );
    //CvParamGrid( int param_id );
    bool check() const;

    CV_PROP_RW double min_val;
    CV_PROP_RW double max_val;
    CV_PROP_RW double step;
};

inline CvParamGrid::CvParamGrid( double _min_val, double _max_val, double _log_step )
{
    min_val = _min_val;
    max_val = _max_val;
    step = _log_step;
}

class CV_EXPORTS_W CvNormalBayesClassifier : public CvStatModel
{
public:
    CV_WRAP CvNormalBayesClassifier();
    virtual ~CvNormalBayesClassifier();

    CvNormalBayesClassifier( const CvMat* trainData, const CvMat* responses,
        const CvMat* varIdx=0, const CvMat* sampleIdx=0 );

    virtual bool train( const CvMat* trainData, const CvMat* responses,
        const CvMat* varIdx = 0, const CvMat* sampleIdx=0, bool update=false );

    virtual float predict( const CvMat* samples, CV_OUT CvMat* results=0 ) const;
    CV_WRAP virtual void clear();

    CV_WRAP CvNormalBayesClassifier( const cv::Mat& trainData, const cv::Mat& responses,
                            const cv::Mat& varIdx=cv::Mat(), const cv::Mat& sampleIdx=cv::Mat() );
    CV_WRAP virtual bool train( const cv::Mat& trainData, const cv::Mat& responses,
                       const cv::Mat& varIdx = cv::Mat(), const cv::Mat& sampleIdx=cv::Mat(),
                       bool update=false );
    CV_WRAP virtual float predict( const cv::Mat& samples, CV_OUT cv::Mat* results=0 ) const;

    virtual void write( CvFileStorage* storage, const char* name ) const;
    virtual void read( CvFileStorage* storage, CvFileNode* node );

protected:
    int     var_count, var_all;
    CvMat*  var_idx;
    CvMat*  cls_labels;
    CvMat** count;
    CvMat** sum;
    CvMat** productsum;
    CvMat** avg;
    CvMat** inv_eigen_values;
    CvMat** cov_rotate_mats;
    CvMat*  c;
};


/****************************************************************************************\
*                          K-Nearest Neighbour Classifier                                *
\****************************************************************************************/

// k Nearest Neighbors
class CV_EXPORTS_W CvKNearest : public CvStatModel
{
public:

    CV_WRAP CvKNearest();
    virtual ~CvKNearest();

    CvKNearest( const CvMat* trainData, const CvMat* responses,
                const CvMat* sampleIdx=0, bool isRegression=false, int max_k=32 );

    virtual bool train( const CvMat* trainData, const CvMat* responses,
                        const CvMat* sampleIdx=0, bool is_regression=false,
                        int maxK=32, bool updateBase=false );

    virtual float find_nearest( const CvMat* samples, int k, CV_OUT CvMat* results=0,
        const float** neighbors=0, CV_OUT CvMat* neighborResponses=0, CV_OUT CvMat* dist=0 ) const;

    CV_WRAP CvKNearest( const cv::Mat& trainData, const cv::Mat& responses,
               const cv::Mat& sampleIdx=cv::Mat(), bool isRegression=false, int max_k=32 );

    CV_WRAP virtual bool train( const cv::Mat& trainData, const cv::Mat& responses,
                       const cv::Mat& sampleIdx=cv::Mat(), bool isRegression=false,
                       int maxK=32, bool updateBase=false );

    virtual float find_nearest( const cv::Mat& samples, int k, cv::Mat* results=0,
                                const float** neighbors=0, cv::Mat* neighborResponses=0,
                                cv::Mat* dist=0 ) const;
    CV_WRAP virtual float find_nearest( const cv::Mat& samples, int k, CV_OUT cv::Mat& results,
                                        CV_OUT cv::Mat& neighborResponses, CV_OUT cv::Mat& dists) const;

    virtual void clear();
    int get_max_k() const;
    int get_var_count() const;
    int get_sample_count() const;
    bool is_regression() const;

    virtual float write_results( int k, int k1, int start, int end,
        const float* neighbor_responses, const float* dist, CvMat* _results,
        CvMat* _neighbor_responses, CvMat* _dist, Cv32suf* sort_buf ) const;

    virtual void find_neighbors_direct( const CvMat* _samples, int k, int start, int end,
        float* neighbor_responses, const float** neighbors, float* dist ) const;

protected:

    int max_k, var_count;
    int total;
    bool regression;
    CvVectors* samples;
};

/****************************************************************************************\
*                                   Support Vector Machines                              *
\****************************************************************************************/

// SVM training parameters
struct CV_EXPORTS_W_MAP CvSVMParams
{
    CvSVMParams();
    CvSVMParams( int svm_type, int kernel_type,
                 double degree, double gamma, double coef0,
                 double Cvalue, double nu, double p,
                 CvMat* class_weights, CvTermCriteria term_crit );

    CV_PROP_RW int         svm_type;
    CV_PROP_RW int         kernel_type;
    CV_PROP_RW double      degree; // for poly
    CV_PROP_RW double      gamma;  // for poly/rbf/sigmoid
    CV_PROP_RW double      coef0;  // for poly/sigmoid

    CV_PROP_RW double      C;  // for CV_SVM_C_SVC, CV_SVM_EPS_SVR and CV_SVM_NU_SVR
    CV_PROP_RW double      nu; // for CV_SVM_NU_SVC, CV_SVM_ONE_CLASS, and CV_SVM_NU_SVR
    CV_PROP_RW double      p; // for CV_SVM_EPS_SVR
    CvMat*      class_weights; // for CV_SVM_C_SVC
    CV_PROP_RW CvTermCriteria term_crit; // termination criteria
};


struct CV_EXPORTS CvSVMKernel
{
    typedef void (CvSVMKernel::*Calc)( int vec_count, int vec_size, const float** vecs,
                                       const float* another, float* results );
    CvSVMKernel();
    CvSVMKernel( const CvSVMParams* params, Calc _calc_func );
    virtual bool create( const CvSVMParams* params, Calc _calc_func );
    virtual ~CvSVMKernel();

    virtual void clear();
    virtual void calc( int vcount, int n, const float** vecs, const float* another, float* results );

    const CvSVMParams* params;
    Calc calc_func;

    virtual void calc_non_rbf_base( int vec_count, int vec_size, const float** vecs,
                                    const float* another, float* results,
                                    double alpha, double beta );

    virtual void calc_linear( int vec_count, int vec_size, const float** vecs,
                              const float* another, float* results );
    virtual void calc_rbf( int vec_count, int vec_size, const float** vecs,
                           const float* another, float* results );
    virtual void calc_poly( int vec_count, int vec_size, const float** vecs,
                            const float* another, float* results );
    virtual void calc_sigmoid( int vec_count, int vec_size, const float** vecs,
                               const float* another, float* results );
};


struct CvSVMKernelRow
{
    CvSVMKernelRow* prev;
    CvSVMKernelRow* next;
    float* data;
};


struct CvSVMSolutionInfo
{
    double obj;
    double rho;
    double upper_bound_p;
    double upper_bound_n;
    double r;   // for Solver_NU
};

class CV_EXPORTS CvSVMSolver
{
public:
    typedef bool (CvSVMSolver::*SelectWorkingSet)( int& i, int& j );
    typedef float* (CvSVMSolver::*GetRow)( int i, float* row, float* dst, bool existed );
    typedef void (CvSVMSolver::*CalcRho)( double& rho, double& r );

    CvSVMSolver();

    CvSVMSolver( int count, int var_count, const float** samples, schar* y,
                 int alpha_count, double* alpha, double Cp, double Cn,
                 CvMemStorage* storage, CvSVMKernel* kernel, GetRow get_row,
                 SelectWorkingSet select_working_set, CalcRho calc_rho );
    virtual bool create( int count, int var_count, const float** samples, schar* y,
                 int alpha_count, double* alpha, double Cp, double Cn,
                 CvMemStorage* storage, CvSVMKernel* kernel, GetRow get_row,
                 SelectWorkingSet select_working_set, CalcRho calc_rho );
    virtual ~CvSVMSolver();

    virtual void clear();
    virtual bool solve_generic( CvSVMSolutionInfo& si );

    virtual bool solve_c_svc( int count, int var_count, const float** samples, schar* y,
                              double Cp, double Cn, CvMemStorage* storage,
                              CvSVMKernel* kernel, double* alpha, CvSVMSolutionInfo& si );
    virtual bool solve_nu_svc( int count, int var_count, const float** samples, schar* y,
                               CvMemStorage* storage, CvSVMKernel* kernel,
                               double* alpha, CvSVMSolutionInfo& si );
    virtual bool solve_one_class( int count, int var_count, const float** samples,
                                  CvMemStorage* storage, CvSVMKernel* kernel,
                                  double* alpha, CvSVMSolutionInfo& si );

    virtual bool solve_eps_svr( int count, int var_count, const float** samples, const float* y,
                                CvMemStorage* storage, CvSVMKernel* kernel,
                                double* alpha, CvSVMSolutionInfo& si );

    virtual bool solve_nu_svr( int count, int var_count, const float** samples, const float* y,
                               CvMemStorage* storage, CvSVMKernel* kernel,
                               double* alpha, CvSVMSolutionInfo& si );

    virtual float* get_row_base( int i, bool* _existed );
    virtual float* get_row( int i, float* dst );

    int sample_count;
    int var_count;
    int cache_size;
    int cache_line_size;
    const float** samples;
    const CvSVMParams* params;
    CvMemStorage* storage;
    CvSVMKernelRow lru_list;
    CvSVMKernelRow* rows;

    int alpha_count;

    double* G;
    double* alpha;

    // -1 - lower bound, 0 - free, 1 - upper bound
    schar* alpha_status;

    schar* y;
    double* b;
    float* buf[2];
    double eps;
    int max_iter;
    double C[2];  // C[0] == Cn, C[1] == Cp
    CvSVMKernel* kernel;

    SelectWorkingSet select_working_set_func;
    CalcRho calc_rho_func;
    GetRow get_row_func;

    virtual bool select_working_set( int& i, int& j );
    virtual bool select_working_set_nu_svm( int& i, int& j );
    virtual void calc_rho( double& rho, double& r );
    virtual void calc_rho_nu_svm( double& rho, double& r );

    virtual float* get_row_svc( int i, float* row, float* dst, bool existed );
    virtual float* get_row_one_class( int i, float* row, float* dst, bool existed );
    virtual float* get_row_svr( int i, float* row, float* dst, bool existed );
};


struct CvSVMDecisionFunc
{
    double rho;
    int sv_count;
    double* alpha;
    int* sv_index;
};


// SVM model
class CV_EXPORTS_W CvSVM : public CvStatModel
{
public:
    // SVM type
    enum { C_SVC=100, NU_SVC=101, ONE_CLASS=102, EPS_SVR=103, NU_SVR=104 };

    // SVM kernel type
    enum { LINEAR=0, POLY=1, RBF=2, SIGMOID=3 };

    // SVM params type
    enum { C=0, GAMMA=1, P=2, NU=3, COEF=4, DEGREE=5 };

    CV_WRAP CvSVM();
    virtual ~CvSVM();

    CvSVM( const CvMat* trainData, const CvMat* responses,
           const CvMat* varIdx=0, const CvMat* sampleIdx=0,
           CvSVMParams params=CvSVMParams() );

    virtual bool train( const CvMat* trainData, const CvMat* responses,
                        const CvMat* varIdx=0, const CvMat* sampleIdx=0,
                        CvSVMParams params=CvSVMParams() );

    virtual bool train_auto( const CvMat* trainData, const CvMat* responses,
        const CvMat* varIdx, const CvMat* sampleIdx, CvSVMParams params,
        int kfold = 10,
        CvParamGrid Cgrid      = get_default_grid(CvSVM::C),
        CvParamGrid gammaGrid  = get_default_grid(CvSVM::GAMMA),
        CvParamGrid pGrid      = get_default_grid(CvSVM::P),
        CvParamGrid nuGrid     = get_default_grid(CvSVM::NU),
        CvParamGrid coeffGrid  = get_default_grid(CvSVM::COEF),
        CvParamGrid degreeGrid = get_default_grid(CvSVM::DEGREE),
        bool balanced=false );

    virtual float predict( const CvMat* sample, bool returnDFVal=false ) const;
    virtual float predict( const CvMat* samples, CV_OUT CvMat* results ) const;

    CV_WRAP CvSVM( const cv::Mat& trainData, const cv::Mat& responses,
          const cv::Mat& varIdx=cv::Mat(), const cv::Mat& sampleIdx=cv::Mat(),
          CvSVMParams params=CvSVMParams() );

    CV_WRAP virtual bool train( const cv::Mat& trainData, const cv::Mat& responses,
                       const cv::Mat& varIdx=cv::Mat(), const cv::Mat& sampleIdx=cv::Mat(),
                       CvSVMParams params=CvSVMParams() );

    CV_WRAP virtual bool train_auto( const cv::Mat& trainData, const cv::Mat& responses,
                            const cv::Mat& varIdx, const cv::Mat& sampleIdx, CvSVMParams params,
                            int k_fold = 10,
                            CvParamGrid Cgrid      = CvSVM::get_default_grid(CvSVM::C),
                            CvParamGrid gammaGrid  = CvSVM::get_default_grid(CvSVM::GAMMA),
                            CvParamGrid pGrid      = CvSVM::get_default_grid(CvSVM::P),
                            CvParamGrid nuGrid     = CvSVM::get_default_grid(CvSVM::NU),
                            CvParamGrid coeffGrid  = CvSVM::get_default_grid(CvSVM::COEF),
                            CvParamGrid degreeGrid = CvSVM::get_default_grid(CvSVM::DEGREE),
                            bool balanced=false);
    CV_WRAP virtual float predict( const cv::Mat& sample, bool returnDFVal=false ) const;
    CV_WRAP_AS(predict_all) void predict( cv::InputArray samples, cv::OutputArray results ) const;

    CV_WRAP virtual int get_support_vector_count() const;
    virtual const float* get_support_vector(int i) const;
    virtual CvSVMParams get_params() const { return params; };
    CV_WRAP virtual void clear();

    static CvParamGrid get_default_grid( int param_id );

    virtual void write( CvFileStorage* storage, const char* name ) const;
    virtual void read( CvFileStorage* storage, CvFileNode* node );
    CV_WRAP int get_var_count() const { return var_idx ? var_idx->cols : var_all; }

protected:

    virtual bool set_params( const CvSVMParams& params );
    virtual bool train1( int sample_count, int var_count, const float** samples,
                    const void* responses, double Cp, double Cn,
                    CvMemStorage* _storage, double* alpha, double& rho );
    virtual bool do_train( int svm_type, int sample_count, int var_count, const float** samples,
                    const CvMat* responses, CvMemStorage* _storage, double* alpha );
    virtual void create_kernel();
    virtual void create_solver();

    virtual float predict( const float* row_sample, int row_len, bool returnDFVal=false ) const;

    virtual void write_params( CvFileStorage* fs ) const;
    virtual void read_params( CvFileStorage* fs, CvFileNode* node );

    void optimize_linear_svm();

    CvSVMParams params;
    CvMat* class_labels;
    int var_all;
    float** sv;
    int sv_total;
    CvMat* var_idx;
    CvMat* class_weights;
    CvSVMDecisionFunc* decision_func;
    CvMemStorage* storage;

    CvSVMSolver* solver;
    CvSVMKernel* kernel;

private:
    CvSVM(const CvSVM&);
    CvSVM& operator = (const CvSVM&);
};

/****************************************************************************************\
*                              Expectation - Maximization                                *
\****************************************************************************************/
namespace cv
{
class CV_EXPORTS_W EM : public Algorithm
{
public:
    // Type of covariation matrices
    enum {COV_MAT_SPHERICAL=0, COV_MAT_DIAGONAL=1, COV_MAT_GENERIC=2, COV_MAT_DEFAULT=COV_MAT_DIAGONAL};

    // Default parameters
    enum {DEFAULT_NCLUSTERS=5, DEFAULT_MAX_ITERS=100};

    // The initial step
    enum {START_E_STEP=1, START_M_STEP=2, START_AUTO_STEP=0};

    CV_WRAP EM(int nclusters=EM::DEFAULT_NCLUSTERS, int covMatType=EM::COV_MAT_DIAGONAL,
       const TermCriteria& termCrit=TermCriteria(TermCriteria::COUNT+TermCriteria::EPS,
                                                 EM::DEFAULT_MAX_ITERS, FLT_EPSILON));

    virtual ~EM();
    CV_WRAP virtual void clear();

    CV_WRAP virtual bool train(InputArray samples,
                       OutputArray logLikelihoods=noArray(),
                       OutputArray labels=noArray(),
                       OutputArray probs=noArray());

    CV_WRAP virtual bool trainE(InputArray samples,
                        InputArray means0,
                        InputArray covs0=noArray(),
                        InputArray weights0=noArray(),
                        OutputArray logLikelihoods=noArray(),
                        OutputArray labels=noArray(),
                        OutputArray probs=noArray());

    CV_WRAP virtual bool trainM(InputArray samples,
                        InputArray probs0,
                        OutputArray logLikelihoods=noArray(),
                        OutputArray labels=noArray(),
                        OutputArray probs=noArray());

    CV_WRAP Vec2d predict(InputArray sample,
                OutputArray probs=noArray()) const;

    CV_WRAP bool isTrained() const;

    AlgorithmInfo* info() const;
    virtual void read(const FileNode& fn);

protected:

    virtual void setTrainData(int startStep, const Mat& samples,
                              const Mat* probs0,
                              const Mat* means0,
                              const vector<Mat>* covs0,
                              const Mat* weights0);

    bool doTrain(int startStep,
                 OutputArray logLikelihoods,
                 OutputArray labels,
                 OutputArray probs);
    virtual void eStep();
    virtual void mStep();

    void clusterTrainSamples();
    void decomposeCovs();
    void computeLogWeightDivDet();

    Vec2d computeProbabilities(const Mat& sample, Mat* probs) const;

    // all inner matrices have type CV_64FC1
    CV_PROP_RW int nclusters;
    CV_PROP_RW int covMatType;
    CV_PROP_RW int maxIters;
    CV_PROP_RW double epsilon;

    Mat trainSamples;
    Mat trainProbs;
    Mat trainLogLikelihoods;
    Mat trainLabels;

    CV_PROP Mat weights;
    CV_PROP Mat means;
    CV_PROP vector<Mat> covs;

    vector<Mat> covsEigenValues;
    vector<Mat> covsRotateMats;
    vector<Mat> invCovsEigenValues;
    Mat logWeightDivDet;
};
} // namespace cv

/****************************************************************************************\
*                                      Decision Tree                                     *
\****************************************************************************************/\
struct CvPair16u32s
{
    unsigned short* u;
    int* i;
};


#define CV_DTREE_CAT_DIR(idx,subset) \
    (2*((subset[(idx)>>5]&(1 << ((idx) & 31)))==0)-1)

struct CvDTreeSplit
{
    int var_idx;
    int condensed_idx;
    int inversed;
    float quality;
    CvDTreeSplit* next;
    union
    {
        int subset[2];
        struct
        {
            float c;
            int split_point;
        }
        ord;
    };
};

struct CvDTreeNode
{
    int class_idx;
    int Tn;
    double value;

    CvDTreeNode* parent;
    CvDTreeNode* left;
    CvDTreeNode* right;

    CvDTreeSplit* split;

    int sample_count;
    int depth;
    int* num_valid;
    int offset;
    int buf_idx;
    double maxlr;

    // global pruning data
    int complexity;
    double alpha;
    double node_risk, tree_risk, tree_error;

    // cross-validation pruning data
    int* cv_Tn;
    double* cv_node_risk;
    double* cv_node_error;

    int get_num_valid(int vi) { return num_valid ? num_valid[vi] : sample_count; }
    void set_num_valid(int vi, int n) { if( num_valid ) num_valid[vi] = n; }
};


struct CV_EXPORTS_W_MAP CvDTreeParams
{
    CV_PROP_RW int   max_categories;
    CV_PROP_RW int   max_depth;
    CV_PROP_RW int   min_sample_count;
    CV_PROP_RW int   cv_folds;
    CV_PROP_RW bool  use_surrogates;
    CV_PROP_RW bool  use_1se_rule;
    CV_PROP_RW bool  truncate_pruned_tree;
    CV_PROP_RW float regression_accuracy;
    const float* priors;

    CvDTreeParams();
    CvDTreeParams( int max_depth, int min_sample_count,
                   float regression_accuracy, bool use_surrogates,
                   int max_categories, int cv_folds,
                   bool use_1se_rule, bool truncate_pruned_tree,
                   const float* priors );
};


struct CV_EXPORTS CvDTreeTrainData
{
    CvDTreeTrainData();
    CvDTreeTrainData( const CvMat* trainData, int tflag,
                      const CvMat* responses, const CvMat* varIdx=0,
                      const CvMat* sampleIdx=0, const CvMat* varType=0,
                      const CvMat* missingDataMask=0,
                      const CvDTreeParams& params=CvDTreeParams(),
                      bool _shared=false, bool _add_labels=false );
    virtual ~CvDTreeTrainData();

    virtual void set_data( const CvMat* trainData, int tflag,
                          const CvMat* responses, const CvMat* varIdx=0,
                          const CvMat* sampleIdx=0, const CvMat* varType=0,
                          const CvMat* missingDataMask=0,
                          const CvDTreeParams& params=CvDTreeParams(),
                          bool _shared=false, bool _add_labels=false,
                          bool _update_data=false );
    virtual void do_responses_copy();

    virtual void get_vectors( const CvMat* _subsample_idx,
         float* values, uchar* missing, float* responses, bool get_class_idx=false );

    virtual CvDTreeNode* subsample_data( const CvMat* _subsample_idx );

    virtual void write_params( CvFileStorage* fs ) const;
    virtual void read_params( CvFileStorage* fs, CvFileNode* node );

    // release all the data
    virtual void clear();

    int get_num_classes() const;
    int get_var_type(int vi) const;
    int get_work_var_count() const {return work_var_count;}

    virtual const float* get_ord_responses( CvDTreeNode* n, float* values_buf, int* sample_indices_buf );
    virtual const int* get_class_labels( CvDTreeNode* n, int* labels_buf );
    virtual const int* get_cv_labels( CvDTreeNode* n, int* labels_buf );
    virtual const int* get_sample_indices( CvDTreeNode* n, int* indices_buf );
    virtual const int* get_cat_var_data( CvDTreeNode* n, int vi, int* cat_values_buf );
    virtual void get_ord_var_data( CvDTreeNode* n, int vi, float* ord_values_buf, int* sorted_indices_buf,
                                   const float** ord_values, const int** sorted_indices, int* sample_indices_buf );
    virtual int get_child_buf_idx( CvDTreeNode* n );

    ////////////////////////////////////

    virtual bool set_params( const CvDTreeParams& params );
    virtual CvDTreeNode* new_node( CvDTreeNode* parent, int count,
                                   int storage_idx, int offset );

    virtual CvDTreeSplit* new_split_ord( int vi, float cmp_val,
                int split_point, int inversed, float quality );
    virtual CvDTreeSplit* new_split_cat( int vi, float quality );
    virtual void free_node_data( CvDTreeNode* node );
    virtual void free_train_data();
    virtual void free_node( CvDTreeNode* node );

    int sample_count, var_all, var_count, max_c_count;
    int ord_var_count, cat_var_count, work_var_count;
    bool have_labels, have_priors;
    bool is_classifier;
    int tflag;

    const CvMat* train_data;
    const CvMat* responses;
    CvMat* responses_copy; // used in Boosting

    int buf_count, buf_size; // buf_size is obsolete, please do not use it, use expression ((int64)buf->rows * (int64)buf->cols / buf_count) instead
    bool shared;
    int is_buf_16u;

    CvMat* cat_count;
    CvMat* cat_ofs;
    CvMat* cat_map;

    CvMat* counts;
    CvMat* buf;
    inline size_t get_length_subbuf() const
    {
        size_t res = (size_t)(work_var_count + 1) * (size_t)sample_count;
        return res;
    }

    CvMat* direction;
    CvMat* split_buf;

    CvMat* var_idx;
    CvMat* var_type; // i-th element =
                     //   k<0  - ordered
                     //   k>=0 - categorical, see k-th element of cat_* arrays
    CvMat* priors;
    CvMat* priors_mult;

    CvDTreeParams params;

    CvMemStorage* tree_storage;
    CvMemStorage* temp_storage;

    CvDTreeNode* data_root;

    CvSet* node_heap;
    CvSet* split_heap;
    CvSet* cv_heap;
    CvSet* nv_heap;

    cv::RNG* rng;
};

class CvDTree;
class CvForestTree;

namespace cv
{
    struct DTreeBestSplitFinder;
    struct ForestTreeBestSplitFinder;
}

class CV_EXPORTS_W CvDTree : public CvStatModel
{
public:
    CV_WRAP CvDTree();
    virtual ~CvDTree();

    virtual bool train( const CvMat* trainData, int tflag,
                        const CvMat* responses, const CvMat* varIdx=0,
                        const CvMat* sampleIdx=0, const CvMat* varType=0,
                        const CvMat* missingDataMask=0,
                        CvDTreeParams params=CvDTreeParams() );

    virtual bool train( CvMLData* trainData, CvDTreeParams params=CvDTreeParams() );

    // type in {CV_TRAIN_ERROR, CV_TEST_ERROR}
    virtual float calc_error( CvMLData* trainData, int type, std::vector<float> *resp = 0 );

    virtual bool train( CvDTreeTrainData* trainData, const CvMat* subsampleIdx );

    virtual CvDTreeNode* predict( const CvMat* sample, const CvMat* missingDataMask=0,
                                  bool preprocessedInput=false ) const;

    CV_WRAP virtual bool train( const cv::Mat& trainData, int tflag,
                       const cv::Mat& responses, const cv::Mat& varIdx=cv::Mat(),
                       const cv::Mat& sampleIdx=cv::Mat(), const cv::Mat& varType=cv::Mat(),
                       const cv::Mat& missingDataMask=cv::Mat(),
                       CvDTreeParams params=CvDTreeParams() );

    CV_WRAP virtual CvDTreeNode* predict( const cv::Mat& sample, const cv::Mat& missingDataMask=cv::Mat(),
                                  bool preprocessedInput=false ) const;
    CV_WRAP virtual cv::Mat getVarImportance();

    virtual const CvMat* get_var_importance();
    CV_WRAP virtual void clear();

    virtual void read( CvFileStorage* fs, CvFileNode* node );
    virtual void write( CvFileStorage* fs, const char* name ) const;

    // special read & write methods for trees in the tree ensembles
    virtual void read( CvFileStorage* fs, CvFileNode* node,
                       CvDTreeTrainData* data );
    virtual void write( CvFileStorage* fs ) const;

    const CvDTreeNode* get_root() const;
    int get_pruned_tree_idx() const;
    CvDTreeTrainData* get_data();

protected:
    friend struct cv::DTreeBestSplitFinder;

    virtual bool do_train( const CvMat* _subsample_idx );

    virtual void try_split_node( CvDTreeNode* n );
    virtual void split_node_data( CvDTreeNode* n );
    virtual CvDTreeSplit* find_best_split( CvDTreeNode* n );
    virtual CvDTreeSplit* find_split_ord_class( CvDTreeNode* n, int vi,
                            float init_quality = 0, CvDTreeSplit* _split = 0, uchar* ext_buf = 0 );
    virtual CvDTreeSplit* find_split_cat_class( CvDTreeNode* n, int vi,
                            float init_quality = 0, CvDTreeSplit* _split = 0, uchar* ext_buf = 0 );
    virtual CvDTreeSplit* find_split_ord_reg( CvDTreeNode* n, int vi,
                            float init_quality = 0, CvDTreeSplit* _split = 0, uchar* ext_buf = 0 );
    virtual CvDTreeSplit* find_split_cat_reg( CvDTreeNode* n, int vi,
                            float init_quality = 0, CvDTreeSplit* _split = 0, uchar* ext_buf = 0 );
    virtual CvDTreeSplit* find_surrogate_split_ord( CvDTreeNode* n, int vi, uchar* ext_buf = 0 );
    virtual CvDTreeSplit* find_surrogate_split_cat( CvDTreeNode* n, int vi, uchar* ext_buf = 0 );
    virtual double calc_node_dir( CvDTreeNode* node );
    virtual void complete_node_dir( CvDTreeNode* node );
    virtual void cluster_categories( const int* vectors, int vector_count,
        int var_count, int* sums, int k, int* cluster_labels );

    virtual void calc_node_value( CvDTreeNode* node );

    virtual void prune_cv();
    virtual double update_tree_rnc( int T, int fold );
    virtual int cut_tree( int T, int fold, double min_alpha );
    virtual void free_prune_data(bool cut_tree);
    virtual void free_tree();

    virtual void write_node( CvFileStorage* fs, CvDTreeNode* node ) const;
    virtual void write_split( CvFileStorage* fs, CvDTreeSplit* split ) const;
    virtual CvDTreeNode* read_node( CvFileStorage* fs, CvFileNode* node, CvDTreeNode* parent );
    virtual CvDTreeSplit* read_split( CvFileStorage* fs, CvFileNode* node );
    virtual void write_tree_nodes( CvFileStorage* fs ) const;
    virtual void read_tree_nodes( CvFileStorage* fs, CvFileNode* node );

    CvDTreeNode* root;
    CvMat* var_importance;
    CvDTreeTrainData* data;

public:
    int pruned_tree_idx;
};


/****************************************************************************************\
*                                   Random Trees Classifier                              *
\****************************************************************************************/

class CvRTrees;

class CV_EXPORTS CvForestTree: public CvDTree
{
public:
    CvForestTree();
    virtual ~CvForestTree();

    virtual bool train( CvDTreeTrainData* trainData, const CvMat* _subsample_idx, CvRTrees* forest );

    virtual int get_var_count() const {return data ? data->var_count : 0;}
    virtual void read( CvFileStorage* fs, CvFileNode* node, CvRTrees* forest, CvDTreeTrainData* _data );

    /* dummy methods to avoid warnings: BEGIN */
    virtual bool train( const CvMat* trainData, int tflag,
                        const CvMat* responses, const CvMat* varIdx=0,
                        const CvMat* sampleIdx=0, const CvMat* varType=0,
                        const CvMat* missingDataMask=0,
                        CvDTreeParams params=CvDTreeParams() );

    virtual bool train( CvDTreeTrainData* trainData, const CvMat* _subsample_idx );
    virtual void read( CvFileStorage* fs, CvFileNode* node );
    virtual void read( CvFileStorage* fs, CvFileNode* node,
                       CvDTreeTrainData* data );
    /* dummy methods to avoid warnings: END */

protected:
    friend struct cv::ForestTreeBestSplitFinder;

    virtual CvDTreeSplit* find_best_split( CvDTreeNode* n );
    CvRTrees* forest;
};


struct CV_EXPORTS_W_MAP CvRTParams : public CvDTreeParams
{
    //Parameters for the forest
    CV_PROP_RW bool calc_var_importance; // true <=> RF processes variable importance
    CV_PROP_RW int nactive_vars;
    CV_PROP_RW CvTermCriteria term_crit;

    CvRTParams();
    CvRTParams( int max_depth, int min_sample_count,
                float regression_accuracy, bool use_surrogates,
                int max_categories, const float* priors, bool calc_var_importance,
                int nactive_vars, int max_num_of_trees_in_the_forest,
                float forest_accuracy, int termcrit_type );
};


class CV_EXPORTS_W CvRTrees : public CvStatModel
{
public:
    CV_WRAP CvRTrees();
    virtual ~CvRTrees();
    virtual bool train( const CvMat* trainData, int tflag,
                        const CvMat* responses, const CvMat* varIdx=0,
                        const CvMat* sampleIdx=0, const CvMat* varType=0,
                        const CvMat* missingDataMask=0,
                        CvRTParams params=CvRTParams() );

    virtual bool train( CvMLData* data, CvRTParams params=CvRTParams() );
    virtual float predict( const CvMat* sample, const CvMat* missing = 0 ) const;
    virtual float predict_prob( const CvMat* sample, const CvMat* missing = 0 ) const;

    CV_WRAP virtual bool train( const cv::Mat& trainData, int tflag,
                       const cv::Mat& responses, const cv::Mat& varIdx=cv::Mat(),
                       const cv::Mat& sampleIdx=cv::Mat(), const cv::Mat& varType=cv::Mat(),
                       const cv::Mat& missingDataMask=cv::Mat(),
                       CvRTParams params=CvRTParams() );
    CV_WRAP virtual float predict( const cv::Mat& sample, const cv::Mat& missing = cv::Mat() ) const;
    CV_WRAP virtual float predict_prob( const cv::Mat& sample, const cv::Mat& missing = cv::Mat() ) const;
    CV_WRAP virtual cv::Mat getVarImportance();

    CV_WRAP virtual void clear();

    virtual const CvMat* get_var_importance();
    virtual float get_proximity( const CvMat* sample1, const CvMat* sample2,
        const CvMat* missing1 = 0, const CvMat* missing2 = 0 ) const;

    virtual float calc_error( CvMLData* data, int type , std::vector<float>* resp = 0 ); // type in {CV_TRAIN_ERROR, CV_TEST_ERROR}

    virtual float get_train_error();

    virtual void read( CvFileStorage* fs, CvFileNode* node );
    virtual void write( CvFileStorage* fs, const char* name ) const;

    CvMat* get_active_var_mask();
    CvRNG* get_rng();

    int get_tree_count() const;
    CvForestTree* get_tree(int i) const;

protected:
    virtual std::string getName() const;

    virtual bool grow_forest( const CvTermCriteria term_crit );

    // array of the trees of the forest
    CvForestTree** trees;
    CvDTreeTrainData* data;
    int ntrees;
    int nclasses;
    double oob_error;
    CvMat* var_importance;
    int nsamples;

    cv::RNG* rng;
    CvMat* active_var_mask;
};

/****************************************************************************************\
*                           Extremely randomized trees Classifier                        *
\****************************************************************************************/
struct CV_EXPORTS CvERTreeTrainData : public CvDTreeTrainData
{
    virtual void set_data( const CvMat* trainData, int tflag,
                          const CvMat* responses, const CvMat* varIdx=0,
                          const CvMat* sampleIdx=0, const CvMat* varType=0,
                          const CvMat* missingDataMask=0,
                          const CvDTreeParams& params=CvDTreeParams(),
                          bool _shared=false, bool _add_labels=false,
                          bool _update_data=false );
    virtual void get_ord_var_data( CvDTreeNode* n, int vi, float* ord_values_buf, int* missing_buf,
                                   const float** ord_values, const int** missing, int* sample_buf = 0 );
    virtual const int* get_sample_indices( CvDTreeNode* n, int* indices_buf );
    virtual const int* get_cv_labels( CvDTreeNode* n, int* labels_buf );
    virtual const int* get_cat_var_data( CvDTreeNode* n, int vi, int* cat_values_buf );
    virtual void get_vectors( const CvMat* _subsample_idx, float* values, uchar* missing,
                              float* responses, bool get_class_idx=false );
    virtual CvDTreeNode* subsample_data( const CvMat* _subsample_idx );
    const CvMat* missing_mask;
};

class CV_EXPORTS CvForestERTree : public CvForestTree
{
protected:
    virtual double calc_node_dir( CvDTreeNode* node );
    virtual CvDTreeSplit* find_split_ord_class( CvDTreeNode* n, int vi,
        float init_quality = 0, CvDTreeSplit* _split = 0, uchar* ext_buf = 0 );
    virtual CvDTreeSplit* find_split_cat_class( CvDTreeNode* n, int vi,
        float init_quality = 0, CvDTreeSplit* _split = 0, uchar* ext_buf = 0 );
    virtual CvDTreeSplit* find_split_ord_reg( CvDTreeNode* n, int vi,
        float init_quality = 0, CvDTreeSplit* _split = 0, uchar* ext_buf = 0 );
    virtual CvDTreeSplit* find_split_cat_reg( CvDTreeNode* n, int vi,
        float init_quality = 0, CvDTreeSplit* _split = 0, uchar* ext_buf = 0 );
    virtual void split_node_data( CvDTreeNode* n );
};

class CV_EXPORTS_W CvERTrees : public CvRTrees
{
public:
    CV_WRAP CvERTrees();
    virtual ~CvERTrees();
    virtual bool train( const CvMat* trainData, int tflag,
                        const CvMat* responses, const CvMat* varIdx=0,
                        const CvMat* sampleIdx=0, const CvMat* varType=0,
                        const CvMat* missingDataMask=0,
                        CvRTParams params=CvRTParams());
    CV_WRAP virtual bool train( const cv::Mat& trainData, int tflag,
                       const cv::Mat& responses, const cv::Mat& varIdx=cv::Mat(),
                       const cv::Mat& sampleIdx=cv::Mat(), const cv::Mat& varType=cv::Mat(),
                       const cv::Mat& missingDataMask=cv::Mat(),
                       CvRTParams params=CvRTParams());
    virtual bool train( CvMLData* data, CvRTParams params=CvRTParams() );
protected:
    virtual std::string getName() const;
    virtual bool grow_forest( const CvTermCriteria term_crit );
};


/****************************************************************************************\
*                                   Boosted tree classifier                              *
\****************************************************************************************/

struct CV_EXPORTS_W_MAP CvBoostParams : public CvDTreeParams
{
    CV_PROP_RW int boost_type;
    CV_PROP_RW int weak_count;
    CV_PROP_RW int split_criteria;
    CV_PROP_RW double weight_trim_rate;

    CvBoostParams();
    CvBoostParams( int boost_type, int weak_count, double weight_trim_rate,
                   int max_depth, bool use_surrogates, const float* priors );
};


class CvBoost;

class CV_EXPORTS CvBoostTree: public CvDTree
{
public:
    CvBoostTree();
    virtual ~CvBoostTree();

    virtual bool train( CvDTreeTrainData* trainData,
                        const CvMat* subsample_idx, CvBoost* ensemble );

    virtual void scale( double s );
    virtual void read( CvFileStorage* fs, CvFileNode* node,
                       CvBoost* ensemble, CvDTreeTrainData* _data );
    virtual void clear();

    /* dummy methods to avoid warnings: BEGIN */
    virtual bool train( const CvMat* trainData, int tflag,
                        const CvMat* responses, const CvMat* varIdx=0,
                        const CvMat* sampleIdx=0, const CvMat* varType=0,
                        const CvMat* missingDataMask=0,
                        CvDTreeParams params=CvDTreeParams() );
    virtual bool train( CvDTreeTrainData* trainData, const CvMat* _subsample_idx );

    virtual void read( CvFileStorage* fs, CvFileNode* node );
    virtual void read( CvFileStorage* fs, CvFileNode* node,
                       CvDTreeTrainData* data );
    /* dummy methods to avoid warnings: END */

protected:

    virtual void try_split_node( CvDTreeNode* n );
    virtual CvDTreeSplit* find_surrogate_split_ord( CvDTreeNode* n, int vi, uchar* ext_buf = 0 );
    virtual CvDTreeSplit* find_surrogate_split_cat( CvDTreeNode* n, int vi, uchar* ext_buf = 0 );
    virtual CvDTreeSplit* find_split_ord_class( CvDTreeNode* n, int vi,
        float init_quality = 0, CvDTreeSplit* _split = 0, uchar* ext_buf = 0 );
    virtual CvDTreeSplit* find_split_cat_class( CvDTreeNode* n, int vi,
        float init_quality = 0, CvDTreeSplit* _split = 0, uchar* ext_buf = 0 );
    virtual CvDTreeSplit* find_split_ord_reg( CvDTreeNode* n, int vi,
        float init_quality = 0, CvDTreeSplit* _split = 0, uchar* ext_buf = 0 );
    virtual CvDTreeSplit* find_split_cat_reg( CvDTreeNode* n, int vi,
        float init_quality = 0, CvDTreeSplit* _split = 0, uchar* ext_buf = 0 );
    virtual void calc_node_value( CvDTreeNode* n );
    virtual double calc_node_dir( CvDTreeNode* n );

    CvBoost* ensemble;
};


class CV_EXPORTS_W CvBoost : public CvStatModel
{
public:
    // Boosting type
    enum { DISCRETE=0, REAL=1, LOGIT=2, GENTLE=3 };

    // Splitting criteria
    enum { DEFAULT=0, GINI=1, MISCLASS=3, SQERR=4 };

    CV_WRAP CvBoost();
    virtual ~CvBoost();

    CvBoost( const CvMat* trainData, int tflag,
             const CvMat* responses, const CvMat* varIdx=0,
             const CvMat* sampleIdx=0, const CvMat* varType=0,
             const CvMat* missingDataMask=0,
             CvBoostParams params=CvBoostParams() );

    virtual bool train( const CvMat* trainData, int tflag,
             const CvMat* responses, const CvMat* varIdx=0,
             const CvMat* sampleIdx=0, const CvMat* varType=0,
             const CvMat* missingDataMask=0,
             CvBoostParams params=CvBoostParams(),
             bool update=false );

    virtual bool train( CvMLData* data,
             CvBoostParams params=CvBoostParams(),
             bool update=false );

    virtual float predict( const CvMat* sample, const CvMat* missing=0,
                           CvMat* weak_responses=0, CvSlice slice=CV_WHOLE_SEQ,
                           bool raw_mode=false, bool return_sum=false ) const;

    CV_WRAP CvBoost( const cv::Mat& trainData, int tflag,
            const cv::Mat& responses, const cv::Mat& varIdx=cv::Mat(),
            const cv::Mat& sampleIdx=cv::Mat(), const cv::Mat& varType=cv::Mat(),
            const cv::Mat& missingDataMask=cv::Mat(),
            CvBoostParams params=CvBoostParams() );

    CV_WRAP virtual bool train( const cv::Mat& trainData, int tflag,
                       const cv::Mat& responses, const cv::Mat& varIdx=cv::Mat(),
                       const cv::Mat& sampleIdx=cv::Mat(), const cv::Mat& varType=cv::Mat(),
                       const cv::Mat& missingDataMask=cv::Mat(),
                       CvBoostParams params=CvBoostParams(),
                       bool update=false );

    CV_WRAP virtual float predict( const cv::Mat& sample, const cv::Mat& missing=cv::Mat(),
                                   const cv::Range& slice=cv::Range::all(), bool rawMode=false,
                                   bool returnSum=false ) const;

    virtual float calc_error( CvMLData* _data, int type , std::vector<float> *resp = 0 ); // type in {CV_TRAIN_ERROR, CV_TEST_ERROR}

    CV_WRAP virtual void prune( CvSlice slice );

    CV_WRAP virtual void clear();

    virtual void write( CvFileStorage* storage, const char* name ) const;
    virtual void read( CvFileStorage* storage, CvFileNode* node );
    virtual const CvMat* get_active_vars(bool absolute_idx=true);

    CvSeq* get_weak_predictors();

    CvMat* get_weights();
    CvMat* get_subtree_weights();
    CvMat* get_weak_response();
    const CvBoostParams& get_params() const;
    const CvDTreeTrainData* get_data() const;

protected:

    void update_weights_impl( CvBoostTree* tree, double initial_weights[2] );

    virtual bool set_params( const CvBoostParams& params );
    virtual void update_weights( CvBoostTree* tree );
    virtual void trim_weights();
    virtual void write_params( CvFileStorage* fs ) const;
    virtual void read_params( CvFileStorage* fs, CvFileNode* node );

    CvDTreeTrainData* data;
    CvBoostParams params;
    CvSeq* weak;

    CvMat* active_vars;
    CvMat* active_vars_abs;
    bool have_active_cat_vars;

    CvMat* orig_response;
    CvMat* sum_response;
    CvMat* weak_eval;
    CvMat* subsample_mask;
    CvMat* weights;
    CvMat* subtree_weights;
    bool have_subsample;
};


/****************************************************************************************\
*                                   Gradient Boosted Trees                               *
\****************************************************************************************/

// DataType: STRUCT CvGBTreesParams
// Parameters of GBT (Gradient Boosted trees model), including single
// tree settings and ensemble parameters.
//
// weak_count          - count of trees in the ensemble
// loss_function_type  - loss function used for ensemble training
// subsample_portion   - portion of whole training set used for
//                       every single tree training.
//                       subsample_portion value is in (0.0, 1.0].
//                       subsample_portion == 1.0 when whole dataset is
//                       used on each step. Count of sample used on each
//                       step is computed as
//                       int(total_samples_count * subsample_portion).
// shrinkage           - regularization parameter.
//                       Each tree prediction is multiplied on shrinkage value.


struct CV_EXPORTS_W_MAP CvGBTreesParams : public CvDTreeParams
{
    CV_PROP_RW int weak_count;
    CV_PROP_RW int loss_function_type;
    CV_PROP_RW float subsample_portion;
    CV_PROP_RW float shrinkage;

    CvGBTreesParams();
    CvGBTreesParams( int loss_function_type, int weak_count, float shrinkage,
        float subsample_portion, int max_depth, bool use_surrogates );
};

// DataType: CLASS CvGBTrees
// Gradient Boosting Trees (GBT) algorithm implementation.
//
// data             - training dataset
// params           - parameters of the CvGBTrees
// weak             - array[0..(class_count-1)] of CvSeq
//                    for storing tree ensembles
// orig_response    - original responses of the training set samples
// sum_response     - predicitons of the current model on the training dataset.
//                    this matrix is updated on every iteration.
// sum_response_tmp - predicitons of the model on the training set on the next
//                    step. On every iteration values of sum_responses_tmp are
//                    computed via sum_responses values. When the current
//                    step is complete sum_response values become equal to
//                    sum_responses_tmp.
// sampleIdx       - indices of samples used for training the ensemble.
//                    CvGBTrees training procedure takes a set of samples
//                    (train_data) and a set of responses (responses).
//                    Only pairs (train_data[i], responses[i]), where i is
//                    in sample_idx are used for training the ensemble.
// subsample_train  - indices of samples used for training a single decision
//                    tree on the current step. This indices are countered
//                    relatively to the sample_idx, so that pairs
//                    (train_data[sample_idx[i]], responses[sample_idx[i]])
//                    are used for training a decision tree.
//                    Training set is randomly splited
//                    in two parts (subsample_train and subsample_test)
//                    on every iteration accordingly to the portion parameter.
// subsample_test   - relative indices of samples from the training set,
//                    which are not used for training a tree on the current
//                    step.
// missing          - mask of the missing values in the training set. This
//                    matrix has the same size as train_data. 1 - missing
//                    value, 0 - not a missing value.
// class_labels     - output class labels map.
// rng              - random number generator. Used for spliting the
//                    training set.
// class_count      - count of output classes.
//                    class_count == 1 in the case of regression,
//                    and > 1 in the case of classification.
// delta            - Huber loss function parameter.
// base_value       - start point of the gradient descent procedure.
//                    model prediction is
//                    f(x) = f_0 + sum_{i=1..weak_count-1}(f_i(x)), where
//                    f_0 is the base value.



class CV_EXPORTS_W CvGBTrees : public CvStatModel
{
public:

    /*
    // DataType: ENUM
    // Loss functions implemented in CvGBTrees.
    //
    // SQUARED_LOSS
    // problem: regression
    // loss = (x - x')^2
    //
    // ABSOLUTE_LOSS
    // problem: regression
    // loss = abs(x - x')
    //
    // HUBER_LOSS
    // problem: regression
    // loss = delta*( abs(x - x') - delta/2), if abs(x - x') > delta
    //           1/2*(x - x')^2, if abs(x - x') <= delta,
    //           where delta is the alpha-quantile of pseudo responses from
    //           the training set.
    //
    // DEVIANCE_LOSS
    // problem: classification
    //
    */
    enum {SQUARED_LOSS=0, ABSOLUTE_LOSS, HUBER_LOSS=3, DEVIANCE_LOSS};


    /*
    // Default constructor. Creates a model only (without training).
    // Should be followed by one form of the train(...) function.
    //
    // API
    // CvGBTrees();

    // INPUT
    // OUTPUT
    // RESULT
    */
    CV_WRAP CvGBTrees();


    /*
    // Full form constructor. Creates a gradient boosting model and does the
    // train.
    //
    // API
    // CvGBTrees( const CvMat* trainData, int tflag,
             const CvMat* responses, const CvMat* varIdx=0,
             const CvMat* sampleIdx=0, const CvMat* varType=0,
             const CvMat* missingDataMask=0,
             CvGBTreesParams params=CvGBTreesParams() );

    // INPUT
    // trainData    - a set of input feature vectors.
    //                  size of matrix is
    //                  <count of samples> x <variables count>
    //                  or <variables count> x <count of samples>
    //                  depending on the tflag parameter.
    //                  matrix values are float.
    // tflag         - a flag showing how do samples stored in the
    //                  trainData matrix row by row (tflag=CV_ROW_SAMPLE)
    //                  or column by column (tflag=CV_COL_SAMPLE).
    // responses     - a vector of responses corresponding to the samples
    //                  in trainData.
    // varIdx       - indices of used variables. zero value means that all
    //                  variables are active.
    // sampleIdx    - indices of used samples. zero value means that all
    //                  samples from trainData are in the training set.
    // varType      - vector of <variables count> length. gives every
    //                  variable type CV_VAR_CATEGORICAL or CV_VAR_ORDERED.
    //                  varType = 0 means all variables are numerical.
    // missingDataMask  - a mask of misiing values in trainData.
    //                  missingDataMask = 0 means that there are no missing
    //                  values.
    // params         - parameters of GTB algorithm.
    // OUTPUT
    // RESULT
    */
    CvGBTrees( const CvMat* trainData, int tflag,
             const CvMat* responses, const CvMat* varIdx=0,
             const CvMat* sampleIdx=0, const CvMat* varType=0,
             const CvMat* missingDataMask=0,
             CvGBTreesParams params=CvGBTreesParams() );


    /*
    // Destructor.
    */
    virtual ~CvGBTrees();


    /*
    // Gradient tree boosting model training
    //
    // API
    // virtual bool train( const CvMat* trainData, int tflag,
             const CvMat* responses, const CvMat* varIdx=0,
             const CvMat* sampleIdx=0, const CvMat* varType=0,
             const CvMat* missingDataMask=0,
             CvGBTreesParams params=CvGBTreesParams(),
             bool update=false );

    // INPUT
    // trainData    - a set of input feature vectors.
    //                  size of matrix is
    //                  <count of samples> x <variables count>
    //                  or <variables count> x <count of samples>
    //                  depending on the tflag parameter.
    //                  matrix values are float.
    // tflag         - a flag showing how do samples stored in the
    //                  trainData matrix row by row (tflag=CV_ROW_SAMPLE)
    //                  or column by column (tflag=CV_COL_SAMPLE).
    // responses     - a vector of responses corresponding to the samples
    //                  in trainData.
    // varIdx       - indices of used variables. zero value means that all
    //                  variables are active.
    // sampleIdx    - indices of used samples. zero value means that all
    //                  samples from trainData are in the training set.
    // varType      - vector of <variables count> length. gives every
    //                  variable type CV_VAR_CATEGORICAL or CV_VAR_ORDERED.
    //                  varType = 0 means all variables are numerical.
    // missingDataMask  - a mask of misiing values in trainData.
    //                  missingDataMask = 0 means that there are no missing
    //                  values.
    // params         - parameters of GTB algorithm.
    // update         - is not supported now. (!)
    // OUTPUT
    // RESULT
    // Error state.
    */
    virtual bool train( const CvMat* trainData, int tflag,
             const CvMat* responses, const CvMat* varIdx=0,
             const CvMat* sampleIdx=0, const CvMat* varType=0,
             const CvMat* missingDataMask=0,
             CvGBTreesParams params=CvGBTreesParams(),
             bool update=false );


    /*
    // Gradient tree boosting model training
    //
    // API
    // virtual bool train( CvMLData* data,
             CvGBTreesParams params=CvGBTreesParams(),
             bool update=false ) {return false;};

    // INPUT
    // data          - training set.
    // params        - parameters of GTB algorithm.
    // update        - is not supported now. (!)
    // OUTPUT
    // RESULT
    // Error state.
    */
    virtual bool train( CvMLData* data,
             CvGBTreesParams params=CvGBTreesParams(),
             bool update=false );


    /*
    // Response value prediction
    //
    // API
    // virtual float predict_serial( const CvMat* sample, const CvMat* missing=0,
             CvMat* weak_responses=0, CvSlice slice = CV_WHOLE_SEQ,
             int k=-1 ) const;

    // INPUT
    // sample         - input sample of the same type as in the training set.
    // missing        - missing values mask. missing=0 if there are no
    //                   missing values in sample vector.
    // weak_responses  - predictions of all of the trees.
    //                   not implemented (!)
    // slice           - part of the ensemble used for prediction.
    //                   slice = CV_WHOLE_SEQ when all trees are used.
    // k               - number of ensemble used.
    //                   k is in {-1,0,1,..,<count of output classes-1>}.
    //                   in the case of classification problem
    //                   <count of output classes-1> ensembles are built.
    //                   If k = -1 ordinary prediction is the result,
    //                   otherwise function gives the prediction of the
    //                   k-th ensemble only.
    // OUTPUT
    // RESULT
    // Predicted value.
    */
    virtual float predict_serial( const CvMat* sample, const CvMat* missing=0,
            CvMat* weakResponses=0, CvSlice slice = CV_WHOLE_SEQ,
            int k=-1 ) const;

    /*
    // Response value prediction.
    // Parallel version (in the case of TBB existence)
    //
    // API
    // virtual float predict( const CvMat* sample, const CvMat* missing=0,
             CvMat* weak_responses=0, CvSlice slice = CV_WHOLE_SEQ,
             int k=-1 ) const;

    // INPUT
    // sample         - input sample of the same type as in the training set.
    // missing        - missing values mask. missing=0 if there are no
    //                   missing values in sample vector.
    // weak_responses  - predictions of all of the trees.
    //                   not implemented (!)
    // slice           - part of the ensemble used for prediction.
    //                   slice = CV_WHOLE_SEQ when all trees are used.
    // k               - number of ensemble used.
    //                   k is in {-1,0,1,..,<count of output classes-1>}.
    //                   in the case of classification problem
    //                   <count of output classes-1> ensembles are built.
    //                   If k = -1 ordinary prediction is the result,
    //                   otherwise function gives the prediction of the
    //                   k-th ensemble only.
    // OUTPUT
    // RESULT
    // Predicted value.
    */
    virtual float predict( const CvMat* sample, const CvMat* missing=0,
            CvMat* weakResponses=0, CvSlice slice = CV_WHOLE_SEQ,
            int k=-1 ) const;

    /*
    // Deletes all the data.
    //
    // API
    // virtual void clear();

    // INPUT
    // OUTPUT
    // delete data, weak, orig_response, sum_response,
    //        weak_eval, subsample_train, subsample_test,
    //        sample_idx, missing, lass_labels
    // delta = 0.0
    // RESULT
    */
    CV_WRAP virtual void clear();

    /*
    // Compute error on the train/test set.
    //
    // API
    // virtual float calc_error( CvMLData* _data, int type,
    //        std::vector<float> *resp = 0 );
    //
    // INPUT
    // data  - dataset
    // type  - defines which error is to compute: train (CV_TRAIN_ERROR) or
    //         test (CV_TEST_ERROR).
    // OUTPUT
    // resp  - vector of predicitons
    // RESULT
    // Error value.
    */
    virtual float calc_error( CvMLData* _data, int type,
            std::vector<float> *resp = 0 );

    /*
    //
    // Write parameters of the gtb model and data. Write learned model.
    //
    // API
    // virtual void write( CvFileStorage* fs, const char* name ) const;
    //
    // INPUT
    // fs     - file storage to read parameters from.
    // name   - model name.
    // OUTPUT
    // RESULT
    */
    virtual void write( CvFileStorage* fs, const char* name ) const;


    /*
    //
    // Read parameters of the gtb model and data. Read learned model.
    //
    // API
    // virtual void read( CvFileStorage* fs, CvFileNode* node );
    //
    // INPUT
    // fs     - file storage to read parameters from.
    // node   - file node.
    // OUTPUT
    // RESULT
    */
    virtual void read( CvFileStorage* fs, CvFileNode* node );


    // new-style C++ interface
    CV_WRAP CvGBTrees( const cv::Mat& trainData, int tflag,
              const cv::Mat& responses, const cv::Mat& varIdx=cv::Mat(),
              const cv::Mat& sampleIdx=cv::Mat(), const cv::Mat& varType=cv::Mat(),
              const cv::Mat& missingDataMask=cv::Mat(),
              CvGBTreesParams params=CvGBTreesParams() );

    CV_WRAP virtual bool train( const cv::Mat& trainData, int tflag,
                       const cv::Mat& responses, const cv::Mat& varIdx=cv::Mat(),
                       const cv::Mat& sampleIdx=cv::Mat(), const cv::Mat& varType=cv::Mat(),
                       const cv::Mat& missingDataMask=cv::Mat(),
                       CvGBTreesParams params=CvGBTreesParams(),
                       bool update=false );

    CV_WRAP virtual float predict( const cv::Mat& sample, const cv::Mat& missing=cv::Mat(),
                           const cv::Range& slice = cv::Range::all(),
                           int k=-1 ) const;

protected:

    /*
    // Compute the gradient vector components.
    //
    // API
    // virtual void find_gradient( const int k = 0);

    // INPUT
    // k        - used for classification problem, determining current
    //            tree ensemble.
    // OUTPUT
    // changes components of data->responses
    // which correspond to samples used for training
    // on the current step.
    // RESULT
    */
    virtual void find_gradient( const int k = 0);


    /*
    //
    // Change values in tree leaves according to the used loss function.
    //
    // API
    // virtual void change_values(CvDTree* tree, const int k = 0);
    //
    // INPUT
    // tree      - decision tree to change.
    // k         - used for classification problem, determining current
    //             tree ensemble.
    // OUTPUT
    // changes 'value' fields of the trees' leaves.
    // changes sum_response_tmp.
    // RESULT
    */
    virtual void change_values(CvDTree* tree, const int k = 0);


    /*
    //
    // Find optimal constant prediction value according to the used loss
    // function.
    // The goal is to find a constant which gives the minimal summary loss
    // on the _Idx samples.
    //
    // API
    // virtual float find_optimal_value( const CvMat* _Idx );
    //
    // INPUT
    // _Idx        - indices of the samples from the training set.
    // OUTPUT
    // RESULT
    // optimal constant value.
    */
    virtual float find_optimal_value( const CvMat* _Idx );


    /*
    //
    // Randomly split the whole training set in two parts according
    // to params.portion.
    //
    // API
    // virtual void do_subsample();
    //
    // INPUT
    // OUTPUT
    // subsample_train - indices of samples used for training
    // subsample_test  - indices of samples used for test
    // RESULT
    */
    virtual void do_subsample();


    /*
    //
    // Internal recursive function giving an array of subtree tree leaves.
    //
    // API
    // void leaves_get( CvDTreeNode** leaves, int& count, CvDTreeNode* node );
    //
    // INPUT
    // node         - current leaf.
    // OUTPUT
    // count        - count of leaves in the subtree.
    // leaves       - array of pointers to leaves.
    // RESULT
    */
    void leaves_get( CvDTreeNode** leaves, int& count, CvDTreeNode* node );


    /*
    //
    // Get leaves of the tree.
    //
    // API
    // CvDTreeNode** GetLeaves( const CvDTree* dtree, int& len );
    //
    // INPUT
    // dtree            - decision tree.
    // OUTPUT
    // len              - count of the leaves.
    // RESULT
    // CvDTreeNode**    - array of pointers to leaves.
    */
    CvDTreeNode** GetLeaves( const CvDTree* dtree, int& len );


    /*
    //
    // Is it a regression or a classification.
    //
    // API
    // bool problem_type();
    //
    // INPUT
    // OUTPUT
    // RESULT
    // false if it is a classification problem,
    // true - if regression.
    */
    virtual bool problem_type() const;


    /*
    //
    // Write parameters of the gtb model.
    //
    // API
    // virtual void write_params( CvFileStorage* fs ) const;
    //
    // INPUT
    // fs           - file storage to write parameters to.
    // OUTPUT
    // RESULT
    */
    virtual void write_params( CvFileStorage* fs ) const;


    /*
    //
    // Read parameters of the gtb model and data.
    //
    // API
    // virtual void read_params( CvFileStorage* fs );
    //
    // INPUT
    // fs           - file storage to read parameters from.
    // OUTPUT
    // params       - parameters of the gtb model.
    // data         - contains information about the structure
    //                of the data set (count of variables,
    //                their types, etc.).
    // class_labels - output class labels map.
    // RESULT
    */
    virtual void read_params( CvFileStorage* fs, CvFileNode* fnode );
    int get_len(const CvMat* mat) const;


    CvDTreeTrainData* data;
    CvGBTreesParams params;

    CvSeq** weak;
    CvMat* orig_response;
    CvMat* sum_response;
    CvMat* sum_response_tmp;
    CvMat* sample_idx;
    CvMat* subsample_train;
    CvMat* subsample_test;
    CvMat* missing;
    CvMat* class_labels;

    cv::RNG* rng;

    int class_count;
    float delta;
    float base_value;

};



/****************************************************************************************\
*                              Artificial Neural Networks (ANN)                          *
\****************************************************************************************/

/////////////////////////////////// Multi-Layer Perceptrons //////////////////////////////

struct CV_EXPORTS_W_MAP CvANN_MLP_TrainParams
{
    CvANN_MLP_TrainParams();
    CvANN_MLP_TrainParams( CvTermCriteria term_crit, int train_method,
                           double param1, double param2=0 );
    ~CvANN_MLP_TrainParams();

    enum { BACKPROP=0, RPROP=1 };

    CV_PROP_RW CvTermCriteria term_crit;
    CV_PROP_RW int train_method;

    // backpropagation parameters
    CV_PROP_RW double bp_dw_scale, bp_moment_scale;

    // rprop parameters
    CV_PROP_RW double rp_dw0, rp_dw_plus, rp_dw_minus, rp_dw_min, rp_dw_max;
};


class CV_EXPORTS_W CvANN_MLP : public CvStatModel
{
public:
    CV_WRAP CvANN_MLP();
    CvANN_MLP( const CvMat* layerSizes,
               int activateFunc=CvANN_MLP::SIGMOID_SYM,
               double fparam1=0, double fparam2=0 );

    virtual ~CvANN_MLP();

    virtual void create( const CvMat* layerSizes,
                         int activateFunc=CvANN_MLP::SIGMOID_SYM,
                         double fparam1=0, double fparam2=0 );

    virtual int train( const CvMat* inputs, const CvMat* outputs,
                       const CvMat* sampleWeights, const CvMat* sampleIdx=0,
                       CvANN_MLP_TrainParams params = CvANN_MLP_TrainParams(),
                       int flags=0 );
    virtual float predict( const CvMat* inputs, CV_OUT CvMat* outputs ) const;

    CV_WRAP CvANN_MLP( const cv::Mat& layerSizes,
              int activateFunc=CvANN_MLP::SIGMOID_SYM,
              double fparam1=0, double fparam2=0 );

    CV_WRAP virtual void create( const cv::Mat& layerSizes,
                        int activateFunc=CvANN_MLP::SIGMOID_SYM,
                        double fparam1=0, double fparam2=0 );

    CV_WRAP virtual int train( const cv::Mat& inputs, const cv::Mat& outputs,
                      const cv::Mat& sampleWeights, const cv::Mat& sampleIdx=cv::Mat(),
                      CvANN_MLP_TrainParams params = CvANN_MLP_TrainParams(),
                      int flags=0 );

    CV_WRAP virtual float predict( const cv::Mat& inputs, CV_OUT cv::Mat& outputs ) const;

    CV_WRAP virtual void clear();

    // possible activation functions
    enum { IDENTITY = 0, SIGMOID_SYM = 1, GAUSSIAN = 2 };

    // available training flags
    enum { UPDATE_WEIGHTS = 1, NO_INPUT_SCALE = 2, NO_OUTPUT_SCALE = 4 };

    virtual void read( CvFileStorage* fs, CvFileNode* node );
    virtual void write( CvFileStorage* storage, const char* name ) const;

    int get_layer_count() { return layer_sizes ? layer_sizes->cols : 0; }
    const CvMat* get_layer_sizes() { return layer_sizes; }
    double* get_weights(int layer)
    {
        return layer_sizes && weights &&
            (unsigned)layer <= (unsigned)layer_sizes->cols ? weights[layer] : 0;
    }

    virtual void calc_activ_func_deriv( CvMat* xf, CvMat* deriv, const double* bias ) const;

protected:

    virtual bool prepare_to_train( const CvMat* _inputs, const CvMat* _outputs,
            const CvMat* _sample_weights, const CvMat* sampleIdx,
            CvVectors* _ivecs, CvVectors* _ovecs, double** _sw, int _flags );

    // sequential random backpropagation
    virtual int train_backprop( CvVectors _ivecs, CvVectors _ovecs, const double* _sw );

    // RPROP algorithm
    virtual int train_rprop( CvVectors _ivecs, CvVectors _ovecs, const double* _sw );

    virtual void calc_activ_func( CvMat* xf, const double* bias ) const;
    virtual void set_activ_func( int _activ_func=SIGMOID_SYM,
                                 double _f_param1=0, double _f_param2=0 );
    virtual void init_weights();
    virtual void scale_input( const CvMat* _src, CvMat* _dst ) const;
    virtual void scale_output( const CvMat* _src, CvMat* _dst ) const;
    virtual void calc_input_scale( const CvVectors* vecs, int flags );
    virtual void calc_output_scale( const CvVectors* vecs, int flags );

    virtual void write_params( CvFileStorage* fs ) const;
    virtual void read_params( CvFileStorage* fs, CvFileNode* node );

    CvMat* layer_sizes;
    CvMat* wbuf;
    CvMat* sample_weights;
    double** weights;
    double f_param1, f_param2;
    double min_val, max_val, min_val1, max_val1;
    int activ_func;
    int max_count, max_buf_sz;
    CvANN_MLP_TrainParams params;
    cv::RNG* rng;
};

/****************************************************************************************\
*                           Auxilary functions declarations                              *
\****************************************************************************************/

/* Generates <sample> from multivariate normal distribution, where <mean> - is an
   average row vector, <cov> - symmetric covariation matrix */
CVAPI(void) cvRandMVNormal( CvMat* mean, CvMat* cov, CvMat* sample,
                           CvRNG* rng CV_DEFAULT(0) );

/* Generates sample from gaussian mixture distribution */
CVAPI(void) cvRandGaussMixture( CvMat* means[],
                               CvMat* covs[],
                               float weights[],
                               int clsnum,
                               CvMat* sample,
                               CvMat* sampClasses CV_DEFAULT(0) );

#define CV_TS_CONCENTRIC_SPHERES 0

/* creates test set */
CVAPI(void) cvCreateTestSet( int type, CvMat** samples,
                 int num_samples,
                 int num_features,
                 CvMat** responses,
                 int num_classes, ... );

/****************************************************************************************\
*                                      Data                                             *
\****************************************************************************************/

#define CV_COUNT     0
#define CV_PORTION   1

struct CV_EXPORTS CvTrainTestSplit
{
    CvTrainTestSplit();
    CvTrainTestSplit( int train_sample_count, bool mix = true);
    CvTrainTestSplit( float train_sample_portion, bool mix = true);

    union
    {
        int count;
        float portion;
    } train_sample_part;
    int train_sample_part_mode;

    bool mix;
};

class CV_EXPORTS CvMLData
{
public:
    CvMLData();
    virtual ~CvMLData();

    // returns:
    // 0 - OK
    // -1 - file can not be opened or is not correct
    int read_csv( const char* filename );

    const CvMat* get_values() const;
    const CvMat* get_responses();
    const CvMat* get_missing() const;

    void set_response_idx( int idx ); // old response become predictors, new response_idx = idx
                                      // if idx < 0 there will be no response
    int get_response_idx() const;

    void set_train_test_split( const CvTrainTestSplit * spl );
    const CvMat* get_train_sample_idx() const;
    const CvMat* get_test_sample_idx() const;
    void mix_train_and_test_idx();

    const CvMat* get_var_idx();
    void chahge_var_idx( int vi, bool state ); // misspelled (saved for back compitability),
                                               // use change_var_idx
    void change_var_idx( int vi, bool state ); // state == true to set vi-variable as predictor

    const CvMat* get_var_types();
    int get_var_type( int var_idx ) const;
    // following 2 methods enable to change vars type
    // use these methods to assign CV_VAR_CATEGORICAL type for categorical variable
    // with numerical labels; in the other cases var types are correctly determined automatically
    void set_var_types( const char* str );  // str examples:
                                            // "ord[0-17],cat[18]", "ord[0,2,4,10-12], cat[1,3,5-9,13,14]",
                                            // "cat", "ord" (all vars are categorical/ordered)
    void change_var_type( int var_idx, int type); // type in { CV_VAR_ORDERED, CV_VAR_CATEGORICAL }

    void set_delimiter( char ch );
    char get_delimiter() const;

    void set_miss_ch( char ch );
    char get_miss_ch() const;

    const std::map<std::string, int>& get_class_labels_map() const;

protected:
    virtual void clear();

    void str_to_flt_elem( const char* token, float& flt_elem, int& type);
    void free_train_test_idx();

    char delimiter;
    char miss_ch;
    //char flt_separator;

    CvMat* values;
    CvMat* missing;
    CvMat* var_types;
    CvMat* var_idx_mask;

    CvMat* response_out; // header
    CvMat* var_idx_out; // mat
    CvMat* var_types_out; // mat

    int response_idx;

    int train_sample_count;
    bool mix;

    int total_class_count;
    std::map<std::string, int> class_map;

    CvMat* train_sample_idx;
    CvMat* test_sample_idx;
    int* sample_idx; // data of train_sample_idx and test_sample_idx

    cv::RNG* rng;
};


namespace cv
{

typedef CvStatModel StatModel;
typedef CvParamGrid ParamGrid;
typedef CvNormalBayesClassifier NormalBayesClassifier;
typedef CvKNearest KNearest;
typedef CvSVMParams SVMParams;
typedef CvSVMKernel SVMKernel;
typedef CvSVMSolver SVMSolver;
typedef CvSVM SVM;
typedef CvDTreeParams DTreeParams;
typedef CvMLData TrainData;
typedef CvDTree DecisionTree;
typedef CvForestTree ForestTree;
typedef CvRTParams RandomTreeParams;
typedef CvRTrees RandomTrees;
typedef CvERTreeTrainData ERTreeTRainData;
typedef CvForestERTree ERTree;
typedef CvERTrees ERTrees;
typedef CvBoostParams BoostParams;
typedef CvBoostTree BoostTree;
typedef CvBoost Boost;
typedef CvANN_MLP_TrainParams ANN_MLP_TrainParams;
typedef CvANN_MLP NeuralNet_MLP;
typedef CvGBTreesParams GradientBoostingTreeParams;
typedef CvGBTrees GradientBoostingTrees;

template<> CV_EXPORTS void Ptr<CvDTreeSplit>::delete_obj();

CV_EXPORTS bool initModule_ml(void);

}

#if defined(__clang__)
#pragma clang diagnostic pop
wester committed
2152 2153
#endif

wester committed
2154 2155 2156 2157
#endif // __cplusplus
#endif // __OPENCV_ML_HPP__

/* End of file. */