1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
/****************************************************************************************\
* Watershed *
\****************************************************************************************/
namespace cv
{
// A node represents a pixel to label
struct WSNode
{
int next;
int mask_ofs;
int img_ofs;
};
// Queue for WSNodes
struct WSQueue
{
WSQueue() { first = last = 0; }
int first, last;
};
static int
allocWSNodes( std::vector<WSNode>& storage )
{
int sz = (int)storage.size();
int newsz = MAX(128, sz*3/2);
storage.resize(newsz);
if( sz == 0 )
{
storage[0].next = 0;
sz = 1;
}
for( int i = sz; i < newsz-1; i++ )
storage[i].next = i+1;
storage[newsz-1].next = 0;
return sz;
}
}
void cv::watershed( InputArray _src, InputOutputArray _markers )
{
// Labels for pixels
const int IN_QUEUE = -2; // Pixel visited
const int WSHED = -1; // Pixel belongs to watershed
// possible bit values = 2^8
const int NQ = 256;
Mat src = _src.getMat(), dst = _markers.getMat();
Size size = src.size();
// Vector of every created node
std::vector<WSNode> storage;
int free_node = 0, node;
// Priority queue of queues of nodes
// from high priority (0) to low priority (255)
WSQueue q[NQ];
// Non-empty queue with highest priority
int active_queue;
int i, j;
// Color differences
int db, dg, dr;
int subs_tab[513];
// MAX(a,b) = b + MAX(a-b,0)
#define ws_max(a,b) ((b) + subs_tab[(a)-(b)+NQ])
// MIN(a,b) = a - MAX(a-b,0)
#define ws_min(a,b) ((a) - subs_tab[(a)-(b)+NQ])
// Create a new node with offsets mofs and iofs in queue idx
#define ws_push(idx,mofs,iofs) \
{ \
if( !free_node ) \
free_node = allocWSNodes( storage );\
node = free_node; \
free_node = storage[free_node].next;\
storage[node].next = 0; \
storage[node].mask_ofs = mofs; \
storage[node].img_ofs = iofs; \
if( q[idx].last ) \
storage[q[idx].last].next=node; \
else \
q[idx].first = node; \
q[idx].last = node; \
}
// Get next node from queue idx
#define ws_pop(idx,mofs,iofs) \
{ \
node = q[idx].first; \
q[idx].first = storage[node].next; \
if( !storage[node].next ) \
q[idx].last = 0; \
storage[node].next = free_node; \
free_node = node; \
mofs = storage[node].mask_ofs; \
iofs = storage[node].img_ofs; \
}
// Get highest absolute channel difference in diff
#define c_diff(ptr1,ptr2,diff) \
{ \
db = std::abs((ptr1)[0] - (ptr2)[0]);\
dg = std::abs((ptr1)[1] - (ptr2)[1]);\
dr = std::abs((ptr1)[2] - (ptr2)[2]);\
diff = ws_max(db,dg); \
diff = ws_max(diff,dr); \
assert( 0 <= diff && diff <= 255 ); \
}
CV_Assert( src.type() == CV_8UC3 && dst.type() == CV_32SC1 );
CV_Assert( src.size() == dst.size() );
// Current pixel in input image
const uchar* img = src.ptr();
// Step size to next row in input image
int istep = int(src.step/sizeof(img[0]));
// Current pixel in mask image
int* mask = dst.ptr<int>();
// Step size to next row in mask image
int mstep = int(dst.step / sizeof(mask[0]));
for( i = 0; i < 256; i++ )
subs_tab[i] = 0;
for( i = 256; i <= 512; i++ )
subs_tab[i] = i - 256;
// draw a pixel-wide border of dummy "watershed" (i.e. boundary) pixels
for( j = 0; j < size.width; j++ )
mask[j] = mask[j + mstep*(size.height-1)] = WSHED;
// initial phase: put all the neighbor pixels of each marker to the ordered queue -
// determine the initial boundaries of the basins
for( i = 1; i < size.height-1; i++ )
{
img += istep; mask += mstep;
mask[0] = mask[size.width-1] = WSHED; // boundary pixels
for( j = 1; j < size.width-1; j++ )
{
int* m = mask + j;
if( m[0] < 0 ) m[0] = 0;
if( m[0] == 0 && (m[-1] > 0 || m[1] > 0 || m[-mstep] > 0 || m[mstep] > 0) )
{
// Find smallest difference to adjacent markers
const uchar* ptr = img + j*3;
int idx = 256, t;
if( m[-1] > 0 )
c_diff( ptr, ptr - 3, idx );
if( m[1] > 0 )
{
c_diff( ptr, ptr + 3, t );
idx = ws_min( idx, t );
}
if( m[-mstep] > 0 )
{
c_diff( ptr, ptr - istep, t );
idx = ws_min( idx, t );
}
if( m[mstep] > 0 )
{
c_diff( ptr, ptr + istep, t );
idx = ws_min( idx, t );
}
// Add to according queue
assert( 0 <= idx && idx <= 255 );
ws_push( idx, i*mstep + j, i*istep + j*3 );
m[0] = IN_QUEUE;
}
}
}
// find the first non-empty queue
for( i = 0; i < NQ; i++ )
if( q[i].first )
break;
// if there is no markers, exit immediately
if( i == NQ )
return;
active_queue = i;
img = src.ptr();
mask = dst.ptr<int>();
// recursively fill the basins
for(;;)
{
int mofs, iofs;
int lab = 0, t;
int* m;
const uchar* ptr;
// Get non-empty queue with highest priority
// Exit condition: empty priority queue
if( q[active_queue].first == 0 )
{
for( i = active_queue+1; i < NQ; i++ )
if( q[i].first )
break;
if( i == NQ )
break;
active_queue = i;
}
// Get next node
ws_pop( active_queue, mofs, iofs );
// Calculate pointer to current pixel in input and marker image
m = mask + mofs;
ptr = img + iofs;
// Check surrounding pixels for labels
// to determine label for current pixel
t = m[-1]; // Left
if( t > 0 ) lab = t;
t = m[1]; // Right
if( t > 0 )
{
if( lab == 0 ) lab = t;
else if( t != lab ) lab = WSHED;
}
t = m[-mstep]; // Top
if( t > 0 )
{
if( lab == 0 ) lab = t;
else if( t != lab ) lab = WSHED;
}
t = m[mstep]; // Bottom
if( t > 0 )
{
if( lab == 0 ) lab = t;
else if( t != lab ) lab = WSHED;
}
// Set label to current pixel in marker image
assert( lab != 0 );
m[0] = lab;
if( lab == WSHED )
continue;
// Add adjacent, unlabeled pixels to corresponding queue
if( m[-1] == 0 )
{
c_diff( ptr, ptr - 3, t );
ws_push( t, mofs - 1, iofs - 3 );
active_queue = ws_min( active_queue, t );
m[-1] = IN_QUEUE;
}
if( m[1] == 0 )
{
c_diff( ptr, ptr + 3, t );
ws_push( t, mofs + 1, iofs + 3 );
active_queue = ws_min( active_queue, t );
m[1] = IN_QUEUE;
}
if( m[-mstep] == 0 )
{
c_diff( ptr, ptr - istep, t );
ws_push( t, mofs - mstep, iofs - istep );
active_queue = ws_min( active_queue, t );
m[-mstep] = IN_QUEUE;
}
if( m[mstep] == 0 )
{
c_diff( ptr, ptr + istep, t );
ws_push( t, mofs + mstep, iofs + istep );
active_queue = ws_min( active_queue, t );
m[mstep] = IN_QUEUE;
}
}
}
/****************************************************************************************\
* Meanshift *
\****************************************************************************************/
void cv::pyrMeanShiftFiltering( InputArray _src, OutputArray _dst,
double sp0, double sr, int max_level,
TermCriteria termcrit )
{
Mat src0 = _src.getMat();
if( src0.empty() )
return;
_dst.create( src0.size(), src0.type() );
Mat dst0 = _dst.getMat();
const int cn = 3;
const int MAX_LEVELS = 8;
if( (unsigned)max_level > (unsigned)MAX_LEVELS )
CV_Error( CV_StsOutOfRange, "The number of pyramid levels is too large or negative" );
std::vector<cv::Mat> src_pyramid(max_level+1);
std::vector<cv::Mat> dst_pyramid(max_level+1);
cv::Mat mask0;
int i, j, level;
//uchar* submask = 0;
#define cdiff(ofs0) (tab[c0-dptr[ofs0]+255] + \
tab[c1-dptr[(ofs0)+1]+255] + tab[c2-dptr[(ofs0)+2]+255] >= isr22)
double sr2 = sr * sr;
int isr2 = cvRound(sr2), isr22 = MAX(isr2,16);
int tab[768];
if( src0.type() != CV_8UC3 )
CV_Error( CV_StsUnsupportedFormat, "Only 8-bit, 3-channel images are supported" );
if( src0.type() != dst0.type() )
CV_Error( CV_StsUnmatchedFormats, "The input and output images must have the same type" );
if( src0.size() != dst0.size() )
CV_Error( CV_StsUnmatchedSizes, "The input and output images must have the same size" );
if( !(termcrit.type & CV_TERMCRIT_ITER) )
termcrit.maxCount = 5;
termcrit.maxCount = MAX(termcrit.maxCount,1);
termcrit.maxCount = MIN(termcrit.maxCount,100);
if( !(termcrit.type & CV_TERMCRIT_EPS) )
termcrit.epsilon = 1.f;
termcrit.epsilon = MAX(termcrit.epsilon, 0.f);
for( i = 0; i < 768; i++ )
tab[i] = (i - 255)*(i - 255);
// 1. construct pyramid
src_pyramid[0] = src0;
dst_pyramid[0] = dst0;
for( level = 1; level <= max_level; level++ )
{
src_pyramid[level].create( (src_pyramid[level-1].rows+1)/2,
(src_pyramid[level-1].cols+1)/2, src_pyramid[level-1].type() );
dst_pyramid[level].create( src_pyramid[level].rows,
src_pyramid[level].cols, src_pyramid[level].type() );
cv::pyrDown( src_pyramid[level-1], src_pyramid[level], src_pyramid[level].size() );
//CV_CALL( cvResize( src_pyramid[level-1], src_pyramid[level], CV_INTER_AREA ));
}
mask0.create(src0.rows, src0.cols, CV_8UC1);
//CV_CALL( submask = (uchar*)cvAlloc( (sp+2)*(sp+2) ));
// 2. apply meanshift, starting from the pyramid top (i.e. the smallest layer)
for( level = max_level; level >= 0; level-- )
{
cv::Mat src = src_pyramid[level];
cv::Size size = src.size();
const uchar* sptr = src.ptr();
int sstep = (int)src.step;
uchar* mask = 0;
int mstep = 0;
uchar* dptr;
int dstep;
float sp = (float)(sp0 / (1 << level));
sp = MAX( sp, 1 );
if( level < max_level )
{
cv::Size size1 = dst_pyramid[level+1].size();
cv::Mat m( size.height, size.width, CV_8UC1, mask0.ptr() );
dstep = (int)dst_pyramid[level+1].step;
dptr = dst_pyramid[level+1].ptr() + dstep + cn;
mstep = (int)m.step;
mask = m.ptr() + mstep;
//cvResize( dst_pyramid[level+1], dst_pyramid[level], CV_INTER_CUBIC );
cv::pyrUp( dst_pyramid[level+1], dst_pyramid[level], dst_pyramid[level].size() );
m.setTo(cv::Scalar::all(0));
for( i = 1; i < size1.height-1; i++, dptr += dstep - (size1.width-2)*3, mask += mstep*2 )
{
for( j = 1; j < size1.width-1; j++, dptr += cn )
{
int c0 = dptr[0], c1 = dptr[1], c2 = dptr[2];
mask[j*2 - 1] = cdiff(-3) || cdiff(3) || cdiff(-dstep-3) || cdiff(-dstep) ||
cdiff(-dstep+3) || cdiff(dstep-3) || cdiff(dstep) || cdiff(dstep+3);
}
}
cv::dilate( m, m, cv::Mat() );
mask = m.ptr();
}
dptr = dst_pyramid[level].ptr();
dstep = (int)dst_pyramid[level].step;
for( i = 0; i < size.height; i++, sptr += sstep - size.width*3,
dptr += dstep - size.width*3,
mask += mstep )
{
for( j = 0; j < size.width; j++, sptr += 3, dptr += 3 )
{
int x0 = j, y0 = i, x1, y1, iter;
int c0, c1, c2;
if( mask && !mask[j] )
continue;
c0 = sptr[0], c1 = sptr[1], c2 = sptr[2];
// iterate meanshift procedure
for( iter = 0; iter < termcrit.maxCount; iter++ )
{
const uchar* ptr;
int x, y, count = 0;
int minx, miny, maxx, maxy;
int s0 = 0, s1 = 0, s2 = 0, sx = 0, sy = 0;
double icount;
int stop_flag;
//mean shift: process pixels in window (p-sigmaSp)x(p+sigmaSp)
minx = cvRound(x0 - sp); minx = MAX(minx, 0);
miny = cvRound(y0 - sp); miny = MAX(miny, 0);
maxx = cvRound(x0 + sp); maxx = MIN(maxx, size.width-1);
maxy = cvRound(y0 + sp); maxy = MIN(maxy, size.height-1);
ptr = sptr + (miny - i)*sstep + (minx - j)*3;
for( y = miny; y <= maxy; y++, ptr += sstep - (maxx-minx+1)*3 )
{
int row_count = 0;
x = minx;
#if CV_ENABLE_UNROLLED
for( ; x + 3 <= maxx; x += 4, ptr += 12 )
{
int t0 = ptr[0], t1 = ptr[1], t2 = ptr[2];
if( tab[t0-c0+255] + tab[t1-c1+255] + tab[t2-c2+255] <= isr2 )
{
s0 += t0; s1 += t1; s2 += t2;
sx += x; row_count++;
}
t0 = ptr[3], t1 = ptr[4], t2 = ptr[5];
if( tab[t0-c0+255] + tab[t1-c1+255] + tab[t2-c2+255] <= isr2 )
{
s0 += t0; s1 += t1; s2 += t2;
sx += x+1; row_count++;
}
t0 = ptr[6], t1 = ptr[7], t2 = ptr[8];
if( tab[t0-c0+255] + tab[t1-c1+255] + tab[t2-c2+255] <= isr2 )
{
s0 += t0; s1 += t1; s2 += t2;
sx += x+2; row_count++;
}
t0 = ptr[9], t1 = ptr[10], t2 = ptr[11];
if( tab[t0-c0+255] + tab[t1-c1+255] + tab[t2-c2+255] <= isr2 )
{
s0 += t0; s1 += t1; s2 += t2;
sx += x+3; row_count++;
}
}
#endif
for( ; x <= maxx; x++, ptr += 3 )
{
int t0 = ptr[0], t1 = ptr[1], t2 = ptr[2];
if( tab[t0-c0+255] + tab[t1-c1+255] + tab[t2-c2+255] <= isr2 )
{
s0 += t0; s1 += t1; s2 += t2;
sx += x; row_count++;
}
}
count += row_count;
sy += y*row_count;
}
if( count == 0 )
break;
icount = 1./count;
x1 = cvRound(sx*icount);
y1 = cvRound(sy*icount);
s0 = cvRound(s0*icount);
s1 = cvRound(s1*icount);
s2 = cvRound(s2*icount);
stop_flag = (x0 == x1 && y0 == y1) || std::abs(x1-x0) + std::abs(y1-y0) +
tab[s0 - c0 + 255] + tab[s1 - c1 + 255] +
tab[s2 - c2 + 255] <= termcrit.epsilon;
x0 = x1; y0 = y1;
c0 = s0; c1 = s1; c2 = s2;
if( stop_flag )
break;
}
dptr[0] = (uchar)c0;
dptr[1] = (uchar)c1;
dptr[2] = (uchar)c2;
}
}
}
}
///////////////////////////////////////////////////////////////////////////////////////////////
CV_IMPL void cvWatershed( const CvArr* _src, CvArr* _markers )
{
cv::Mat src = cv::cvarrToMat(_src), markers = cv::cvarrToMat(_markers);
cv::watershed(src, markers);
}
CV_IMPL void
cvPyrMeanShiftFiltering( const CvArr* srcarr, CvArr* dstarr,
double sp0, double sr, int max_level,
CvTermCriteria termcrit )
{
cv::Mat src = cv::cvarrToMat(srcarr);
const cv::Mat dst = cv::cvarrToMat(dstarr);
cv::pyrMeanShiftFiltering(src, dst, sp0, sr, max_level, termcrit);
}