1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Comuter Vision Library
//
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// @Authors
// Peng Xiao, pengxiao@multicorewareinc.com
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors as is and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular urpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#include "opencl_kernels.hpp"
using namespace cv;
using namespace cv::ocl;
namespace cv
{
namespace ocl
{
namespace interpolate
{
//The following are ported from NPP_staging.cu
// As it is not valid to do pointer offset operations on host for default oclMat's native cl_mem pointer,
// we may have to do this on kernel
void memsetKernel(float val, oclMat &img, int height, int offset);
void normalizeKernel(oclMat &buffer, int height, int factor_offset, int dst_offset);
void forwardWarpKernel(const oclMat &src, oclMat &buffer, const oclMat &u, const oclMat &v, const float time_scale,
int b_offset, int d_offset); // buffer, dst offset
//OpenCL conversion of nppiStVectorWarp_PSF2x2_32f_C1
void vectorWarp(const oclMat &src, const oclMat &u, const oclMat &v,
oclMat &buffer, int buf_offset, float timeScale, int dst_offset);
//OpenCL conversion of BlendFrames
void blendFrames(const oclMat &frame0, const oclMat &frame1, const oclMat &buffer,
float pos, oclMat &newFrame, cl_mem &, cl_mem &);
// bind a buffer to an image
void bindImgTex(const oclMat &img, cl_mem &tex);
}
}
}
void cv::ocl::interpolateFrames(const oclMat &frame0, const oclMat &frame1,
const oclMat &fu, const oclMat &fv,
const oclMat &bu, const oclMat &bv,
float pos, oclMat &newFrame, oclMat &buf)
{
CV_Assert(frame0.type() == CV_32FC1);
CV_Assert(frame1.size() == frame0.size() && frame1.type() == frame0.type());
CV_Assert(fu.size() == frame0.size() && fu.type() == frame0.type());
CV_Assert(fv.size() == frame0.size() && fv.type() == frame0.type());
CV_Assert(bu.size() == frame0.size() && bu.type() == frame0.type());
CV_Assert(bv.size() == frame0.size() && bv.type() == frame0.type());
newFrame.create(frame0.size(), frame0.type());
buf.create(6 * frame0.rows, frame0.cols, CV_32FC1);
buf.setTo(Scalar::all(0));
size_t step = frame0.step;
CV_Assert(frame1.step == step && fu.step == step && fv.step == step && bu.step == step && bv.step == step && newFrame.step == step && buf.step == step);
cl_mem tex_src0 = 0, tex_src1 = 0;
// warp flow
using namespace interpolate;
bindImgTex(frame0, tex_src0);
bindImgTex(frame1, tex_src1);
// CUDA Offsets
enum
{
cov0 = 0,
cov1,
fwdU,
fwdV,
bwdU,
bwdV
};
vectorWarp(fu, fu, fv, buf, cov0, pos, fwdU);
vectorWarp(fv, fu, fv, buf, cov0, pos, fwdV);
vectorWarp(bu, bu, bv, buf, cov1, 1.0f - pos, bwdU);
vectorWarp(bv, bu, bv, buf, cov1, 1.0f - pos, bwdU);
blendFrames(frame0, frame1, buf, pos, newFrame, tex_src0, tex_src1);
openCLFree(tex_src0);
openCLFree(tex_src1);
}
void interpolate::memsetKernel(float val, oclMat &img, int height, int offset)
{
Context *clCxt = Context::getContext();
string kernelName = "memsetKernel";
vector< pair<size_t, const void *> > args;
int step = img.step / sizeof(float);
offset = step * height * offset;
args.push_back( make_pair( sizeof(cl_float), (void *)&val));
args.push_back( make_pair( sizeof(cl_mem), (void *)&img.data));
args.push_back( make_pair( sizeof(cl_int), (void *)&img.cols));
args.push_back( make_pair( sizeof(cl_int), (void *)&height));
args.push_back( make_pair( sizeof(cl_int), (void *)&step));
args.push_back( make_pair( sizeof(cl_int), (void *)&offset));
size_t globalThreads[3] = {(size_t)img.cols, (size_t)height, 1};
size_t localThreads[3] = {16, 16, 1};
openCLExecuteKernel(clCxt, &interpolate_frames, kernelName, globalThreads, localThreads, args, -1, -1);
}
void interpolate::normalizeKernel(oclMat &buffer, int height, int factor_offset, int dst_offset)
{
Context *clCxt = Context::getContext();
string kernelName = "normalizeKernel";
vector< pair<size_t, const void *> > args;
int step = buffer.step / sizeof(float);
factor_offset = step * height * factor_offset;
dst_offset = step * height * dst_offset;
args.push_back( make_pair( sizeof(cl_mem), (void *)&buffer.data));
args.push_back( make_pair( sizeof(cl_int), (void *)&buffer.cols));
args.push_back( make_pair( sizeof(cl_int), (void *)&height));
args.push_back( make_pair( sizeof(cl_int), (void *)&step));
args.push_back( make_pair( sizeof(cl_int), (void *)&factor_offset));
args.push_back( make_pair( sizeof(cl_int), (void *)&dst_offset));
size_t globalThreads[3] = {(size_t)buffer.cols, (size_t)height, 1};
size_t localThreads[3] = {16, 16, 1};
openCLExecuteKernel(clCxt, &interpolate_frames, kernelName, globalThreads, localThreads, args, -1, -1);
}
void interpolate::forwardWarpKernel(const oclMat &src, oclMat &buffer, const oclMat &u, const oclMat &v, const float time_scale,
int b_offset, int d_offset)
{
Context *clCxt = Context::getContext();
string kernelName = "forwardWarpKernel";
vector< pair<size_t, const void *> > args;
int f_step = u.step / sizeof(float); // flow step
int b_step = buffer.step / sizeof(float);
b_offset = b_step * src.rows * b_offset;
d_offset = b_step * src.rows * d_offset;
args.push_back( make_pair( sizeof(cl_mem), (void *)&src.data));
args.push_back( make_pair( sizeof(cl_mem), (void *)&buffer.data));
args.push_back( make_pair( sizeof(cl_mem), (void *)&u.data));
args.push_back( make_pair( sizeof(cl_mem), (void *)&v.data));
args.push_back( make_pair( sizeof(cl_int), (void *)&src.cols));
args.push_back( make_pair( sizeof(cl_int), (void *)&src.rows));
args.push_back( make_pair( sizeof(cl_int), (void *)&f_step));
args.push_back( make_pair( sizeof(cl_int), (void *)&b_step));
args.push_back( make_pair( sizeof(cl_int), (void *)&b_offset));
args.push_back( make_pair( sizeof(cl_int), (void *)&d_offset));
args.push_back( make_pair( sizeof(cl_float), (void *)&time_scale));
size_t globalThreads[3] = {(size_t)src.cols, (size_t)src.rows, 1};
size_t localThreads[3] = {16, 16, 1};
openCLExecuteKernel(clCxt, &interpolate_frames, kernelName, globalThreads, localThreads, args, -1, -1);
}
void interpolate::vectorWarp(const oclMat &src, const oclMat &u, const oclMat &v,
oclMat &buffer, int b_offset, float timeScale, int d_offset)
{
memsetKernel(0, buffer, src.rows, b_offset);
forwardWarpKernel(src, buffer, u, v, timeScale, b_offset, d_offset);
normalizeKernel(buffer, src.rows, b_offset, d_offset);
}
void interpolate::blendFrames(const oclMat &frame0, const oclMat &/*frame1*/, const oclMat &buffer, float pos, oclMat &newFrame, cl_mem &tex_src0, cl_mem &tex_src1)
{
int step = buffer.step / sizeof(float);
Context *clCxt = Context::getContext();
string kernelName = "blendFramesKernel";
vector< pair<size_t, const void *> > args;
args.push_back( make_pair( sizeof(cl_mem), (void *)&tex_src0));
args.push_back( make_pair( sizeof(cl_mem), (void *)&tex_src1));
args.push_back( make_pair( sizeof(cl_mem), (void *)&buffer.data));
args.push_back( make_pair( sizeof(cl_mem), (void *)&newFrame.data));
args.push_back( make_pair( sizeof(cl_int), (void *)&frame0.cols));
args.push_back( make_pair( sizeof(cl_int), (void *)&frame0.rows));
args.push_back( make_pair( sizeof(cl_int), (void *)&step));
args.push_back( make_pair( sizeof(cl_float), (void *)&pos));
size_t globalThreads[3] = {(size_t)frame0.cols, (size_t)frame0.rows, 1};
size_t localThreads[3] = {16, 16, 1};
openCLExecuteKernel(clCxt, &interpolate_frames, kernelName, globalThreads, localThreads, args, -1, -1);
}
void interpolate::bindImgTex(const oclMat &img, cl_mem &texture)
{
if(texture)
{
openCLFree(texture);
}
texture = bindTexture(img);
}