tvl1flow.cpp 27.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

/*
//
// This implementation is based on Javier Sánchez Pérez <jsanchez@dis.ulpgc.es> implementation.
// Original BSD license:
//
// Copyright (c) 2011, Javier Sánchez Pérez, Enric Meinhardt Llopis
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice, this
//   list of conditions and the following disclaimer.
//
// * Redistributions in binary form must reproduce the above copyright notice,
//   this list of conditions and the following disclaimer in the documentation
//   and/or other materials provided with the distribution.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
*/

#include "precomp.hpp"

using namespace std;
using namespace cv;

namespace {

class OpticalFlowDual_TVL1 : public DenseOpticalFlow
{
public:
    OpticalFlowDual_TVL1();

    void calc(InputArray I0, InputArray I1, InputOutputArray flow);
    void collectGarbage();

    AlgorithmInfo* info() const;

protected:
    double tau;
    double lambda;
    double theta;
    int nscales;
    int warps;
    double epsilon;
    int iterations;
    bool useInitialFlow;

private:
    void procOneScale(const Mat_<float>& I0, const Mat_<float>& I1, Mat_<float>& u1, Mat_<float>& u2);

    std::vector<Mat_<float> > I0s;
    std::vector<Mat_<float> > I1s;
    std::vector<Mat_<float> > u1s;
    std::vector<Mat_<float> > u2s;

    Mat_<float> I1x_buf;
    Mat_<float> I1y_buf;

    Mat_<float> flowMap1_buf;
    Mat_<float> flowMap2_buf;

    Mat_<float> I1w_buf;
    Mat_<float> I1wx_buf;
    Mat_<float> I1wy_buf;

    Mat_<float> grad_buf;
    Mat_<float> rho_c_buf;

    Mat_<float> v1_buf;
    Mat_<float> v2_buf;

    Mat_<float> p11_buf;
    Mat_<float> p12_buf;
    Mat_<float> p21_buf;
    Mat_<float> p22_buf;

    Mat_<float> div_p1_buf;
    Mat_<float> div_p2_buf;

    Mat_<float> u1x_buf;
    Mat_<float> u1y_buf;
    Mat_<float> u2x_buf;
    Mat_<float> u2y_buf;
};

OpticalFlowDual_TVL1::OpticalFlowDual_TVL1()
{
    tau            = 0.25;
    lambda         = 0.15;
    theta          = 0.3;
    nscales        = 5;
    warps          = 5;
    epsilon        = 0.01;
    iterations     = 300;
    useInitialFlow = false;
}

void OpticalFlowDual_TVL1::calc(InputArray _I0, InputArray _I1, InputOutputArray _flow)
{
    Mat I0 = _I0.getMat();
    Mat I1 = _I1.getMat();

    CV_Assert( I0.type() == CV_8UC1 || I0.type() == CV_32FC1 );
    CV_Assert( I0.size() == I1.size() );
    CV_Assert( I0.type() == I1.type() );
    CV_Assert( !useInitialFlow || (_flow.size() == I0.size() && _flow.type() == CV_32FC2) );
    CV_Assert( nscales > 0 );

    // allocate memory for the pyramid structure
    I0s.resize(nscales);
    I1s.resize(nscales);
    u1s.resize(nscales);
    u2s.resize(nscales);

    I0.convertTo(I0s[0], I0s[0].depth(), I0.depth() == CV_8U ? 1.0 : 255.0);
    I1.convertTo(I1s[0], I1s[0].depth(), I1.depth() == CV_8U ? 1.0 : 255.0);

    u1s[0].create(I0.size());
    u2s[0].create(I0.size());

    if (useInitialFlow)
    {
        Mat_<float> mv[] = {u1s[0], u2s[0]};
        split(_flow.getMat(), mv);
    }

    I1x_buf.create(I0.size());
    I1y_buf.create(I0.size());

    flowMap1_buf.create(I0.size());
    flowMap2_buf.create(I0.size());

    I1w_buf.create(I0.size());
    I1wx_buf.create(I0.size());
    I1wy_buf.create(I0.size());

    grad_buf.create(I0.size());
    rho_c_buf.create(I0.size());

    v1_buf.create(I0.size());
    v2_buf.create(I0.size());

    p11_buf.create(I0.size());
    p12_buf.create(I0.size());
    p21_buf.create(I0.size());
    p22_buf.create(I0.size());

    div_p1_buf.create(I0.size());
    div_p2_buf.create(I0.size());

    u1x_buf.create(I0.size());
    u1y_buf.create(I0.size());
    u2x_buf.create(I0.size());
    u2y_buf.create(I0.size());

    // create the scales
    for (int s = 1; s < nscales; ++s)
    {
        pyrDown(I0s[s - 1], I0s[s]);
        pyrDown(I1s[s - 1], I1s[s]);

        if (I0s[s].cols < 16 || I0s[s].rows < 16)
        {
            nscales = s;
            break;
        }

        if (useInitialFlow)
        {
            pyrDown(u1s[s - 1], u1s[s]);
            pyrDown(u2s[s - 1], u2s[s]);

            multiply(u1s[s], Scalar::all(0.5), u1s[s]);
            multiply(u2s[s], Scalar::all(0.5), u2s[s]);
        }
        else
        {
            u1s[s].create(I0s[s].size());
            u2s[s].create(I0s[s].size());
        }
    }

    if (!useInitialFlow)
    {
        u1s[nscales-1].setTo(Scalar::all(0));
        u2s[nscales-1].setTo(Scalar::all(0));
    }

    // pyramidal structure for computing the optical flow
    for (int s = nscales - 1; s >= 0; --s)
    {
        // compute the optical flow at the current scale
        procOneScale(I0s[s], I1s[s], u1s[s], u2s[s]);

        // if this was the last scale, finish now
        if (s == 0)
            break;

        // otherwise, upsample the optical flow

        // zoom the optical flow for the next finer scale
        resize(u1s[s], u1s[s - 1], I0s[s - 1].size());
        resize(u2s[s], u2s[s - 1], I0s[s - 1].size());

        // scale the optical flow with the appropriate zoom factor
        multiply(u1s[s - 1], Scalar::all(2), u1s[s - 1]);
        multiply(u2s[s - 1], Scalar::all(2), u2s[s - 1]);
    }

    Mat uxy[] = {u1s[0], u2s[0]};
    merge(uxy, 2, _flow);
}

////////////////////////////////////////////////////////////
// buildFlowMap

struct BuildFlowMapBody : ParallelLoopBody
{
    void operator() (const Range& range) const;

    Mat_<float> u1;
    Mat_<float> u2;
    mutable Mat_<float> map1;
    mutable Mat_<float> map2;
};

void BuildFlowMapBody::operator() (const Range& range) const
{
    for (int y = range.start; y < range.end; ++y)
    {
        const float* u1Row = u1[y];
        const float* u2Row = u2[y];

        float* map1Row = map1[y];
        float* map2Row = map2[y];

        for (int x = 0; x < u1.cols; ++x)
        {
            map1Row[x] = x + u1Row[x];
            map2Row[x] = y + u2Row[x];
        }
    }
}

void buildFlowMap(const Mat_<float>& u1, const Mat_<float>& u2, Mat_<float>& map1, Mat_<float>& map2)
{
    CV_DbgAssert( u2.size() == u1.size() );
    CV_DbgAssert( map1.size() == u1.size() );
    CV_DbgAssert( map2.size() == u1.size() );

    BuildFlowMapBody body;

    body.u1 = u1;
    body.u2 = u2;
    body.map1 = map1;
    body.map2 = map2;

    parallel_for_(Range(0, u1.rows), body);
}

////////////////////////////////////////////////////////////
// centeredGradient

struct CenteredGradientBody : ParallelLoopBody
{
    void operator() (const Range& range) const;

    Mat_<float> src;
    mutable Mat_<float> dx;
    mutable Mat_<float> dy;
};

void CenteredGradientBody::operator() (const Range& range) const
{
    const int last_col = src.cols - 1;

    for (int y = range.start; y < range.end; ++y)
    {
        const float* srcPrevRow = src[y - 1];
        const float* srcCurRow = src[y];
        const float* srcNextRow = src[y + 1];

        float* dxRow = dx[y];
        float* dyRow = dy[y];

        for (int x = 1; x < last_col; ++x)
        {
            dxRow[x] = 0.5f * (srcCurRow[x + 1] - srcCurRow[x - 1]);
            dyRow[x] = 0.5f * (srcNextRow[x] - srcPrevRow[x]);
        }
    }
}

void centeredGradient(const Mat_<float>& src, Mat_<float>& dx, Mat_<float>& dy)
{
    CV_DbgAssert( src.rows > 2 && src.cols > 2 );
    CV_DbgAssert( dx.size() == src.size() );
    CV_DbgAssert( dy.size() == src.size() );

    const int last_row = src.rows - 1;
    const int last_col = src.cols - 1;

    // compute the gradient on the center body of the image
    {
        CenteredGradientBody body;

        body.src = src;
        body.dx = dx;
        body.dy = dy;

        parallel_for_(Range(1, last_row), body);
    }

    // compute the gradient on the first and last rows
    for (int x = 1; x < last_col; ++x)
    {
        dx(0, x) = 0.5f * (src(0, x + 1) - src(0, x - 1));
        dy(0, x) = 0.5f * (src(1, x) - src(0, x));

        dx(last_row, x) = 0.5f * (src(last_row, x + 1) - src(last_row, x - 1));
        dy(last_row, x) = 0.5f * (src(last_row, x) - src(last_row - 1, x));
    }

    // compute the gradient on the first and last columns
    for (int y = 1; y < last_row; ++y)
    {
        dx(y, 0) = 0.5f * (src(y, 1) - src(y, 0));
        dy(y, 0) = 0.5f * (src(y + 1, 0) - src(y - 1, 0));

        dx(y, last_col) = 0.5f * (src(y, last_col) - src(y, last_col - 1));
        dy(y, last_col) = 0.5f * (src(y + 1, last_col) - src(y - 1, last_col));
    }

    // compute the gradient at the four corners
    dx(0, 0) = 0.5f * (src(0, 1) - src(0, 0));
    dy(0, 0) = 0.5f * (src(1, 0) - src(0, 0));

    dx(0, last_col) = 0.5f * (src(0, last_col) - src(0, last_col - 1));
    dy(0, last_col) = 0.5f * (src(1, last_col) - src(0, last_col));

    dx(last_row, 0) = 0.5f * (src(last_row, 1) - src(last_row, 0));
    dy(last_row, 0) = 0.5f * (src(last_row, 0) - src(last_row - 1, 0));

    dx(last_row, last_col) = 0.5f * (src(last_row, last_col) - src(last_row, last_col - 1));
    dy(last_row, last_col) = 0.5f * (src(last_row, last_col) - src(last_row - 1, last_col));
}

////////////////////////////////////////////////////////////
// forwardGradient

struct ForwardGradientBody : ParallelLoopBody
{
    void operator() (const Range& range) const;

    Mat_<float> src;
    mutable Mat_<float> dx;
    mutable Mat_<float> dy;
};

void ForwardGradientBody::operator() (const Range& range) const
{
    const int last_col = src.cols - 1;

    for (int y = range.start; y < range.end; ++y)
    {
        const float* srcCurRow = src[y];
        const float* srcNextRow = src[y + 1];

        float* dxRow = dx[y];
        float* dyRow = dy[y];

        for (int x = 0; x < last_col; ++x)
        {
            dxRow[x] = srcCurRow[x + 1] - srcCurRow[x];
            dyRow[x] = srcNextRow[x] - srcCurRow[x];
        }
    }
}

void forwardGradient(const Mat_<float>& src, Mat_<float>& dx, Mat_<float>& dy)
{
    CV_DbgAssert( src.rows > 2 && src.cols > 2 );
    CV_DbgAssert( dx.size() == src.size() );
    CV_DbgAssert( dy.size() == src.size() );

    const int last_row = src.rows - 1;
    const int last_col = src.cols - 1;

    // compute the gradient on the central body of the image
    {
        ForwardGradientBody body;

        body.src = src;
        body.dx = dx;
        body.dy = dy;

        parallel_for_(Range(0, last_row), body);
    }

    // compute the gradient on the last row
    for (int x = 0; x < last_col; ++x)
    {
        dx(last_row, x) = src(last_row, x + 1) - src(last_row, x);
        dy(last_row, x) = 0.0f;
    }

    // compute the gradient on the last column
    for (int y = 0; y < last_row; ++y)
    {
        dx(y, last_col) = 0.0f;
        dy(y, last_col) = src(y + 1, last_col) - src(y, last_col);
    }

    dx(last_row, last_col) = 0.0f;
    dy(last_row, last_col) = 0.0f;
}

////////////////////////////////////////////////////////////
// divergence

struct DivergenceBody : ParallelLoopBody
{
    void operator() (const Range& range) const;

    Mat_<float> v1;
    Mat_<float> v2;
    mutable Mat_<float> div;
};

void DivergenceBody::operator() (const Range& range) const
{
    for (int y = range.start; y < range.end; ++y)
    {
        const float* v1Row = v1[y];
        const float* v2PrevRow = v2[y - 1];
        const float* v2CurRow = v2[y];

        float* divRow = div[y];

        for(int x = 1; x < v1.cols; ++x)
        {
            const float v1x = v1Row[x] - v1Row[x - 1];
            const float v2y = v2CurRow[x] - v2PrevRow[x];

            divRow[x] = v1x + v2y;
        }
    }
}

void divergence(const Mat_<float>& v1, const Mat_<float>& v2, Mat_<float>& div)
{
    CV_DbgAssert( v1.rows > 2 && v1.cols > 2 );
    CV_DbgAssert( v2.size() == v1.size() );
    CV_DbgAssert( div.size() == v1.size() );

    {
        DivergenceBody body;

        body.v1 = v1;
        body.v2 = v2;
        body.div = div;

        parallel_for_(Range(1, v1.rows), body);
    }

    // compute the divergence on the first row
    for(int x = 1; x < v1.cols; ++x)
        div(0, x) = v1(0, x) - v1(0, x - 1) + v2(0, x);

    // compute the divergence on the first column
    for (int y = 1; y < v1.rows; ++y)
        div(y, 0) = v1(y, 0) + v2(y, 0) - v2(y - 1, 0);

    div(0, 0) = v1(0, 0) + v2(0, 0);
}

////////////////////////////////////////////////////////////
// calcGradRho

struct CalcGradRhoBody : ParallelLoopBody
{
    void operator() (const Range& range) const;

    Mat_<float> I0;
    Mat_<float> I1w;
    Mat_<float> I1wx;
    Mat_<float> I1wy;
    Mat_<float> u1;
    Mat_<float> u2;
    mutable Mat_<float> grad;
    mutable Mat_<float> rho_c;
};

void CalcGradRhoBody::operator() (const Range& range) const
{
    for (int y = range.start; y < range.end; ++y)
    {
        const float* I0Row = I0[y];
        const float* I1wRow = I1w[y];
        const float* I1wxRow = I1wx[y];
        const float* I1wyRow = I1wy[y];
        const float* u1Row = u1[y];
        const float* u2Row = u2[y];

        float* gradRow = grad[y];
        float* rhoRow = rho_c[y];

        for (int x = 0; x < I0.cols; ++x)
        {
            const float Ix2 = I1wxRow[x] * I1wxRow[x];
            const float Iy2 = I1wyRow[x] * I1wyRow[x];

            // store the |Grad(I1)|^2
            gradRow[x] = Ix2 + Iy2;

            // compute the constant part of the rho function
            rhoRow[x] = (I1wRow[x] - I1wxRow[x] * u1Row[x] - I1wyRow[x] * u2Row[x] - I0Row[x]);
        }
    }
}

void calcGradRho(const Mat_<float>& I0, const Mat_<float>& I1w, const Mat_<float>& I1wx, const Mat_<float>& I1wy, const Mat_<float>& u1, const Mat_<float>& u2,
    Mat_<float>& grad, Mat_<float>& rho_c)
{
    CV_DbgAssert( I1w.size() == I0.size() );
    CV_DbgAssert( I1wx.size() == I0.size() );
    CV_DbgAssert( I1wy.size() == I0.size() );
    CV_DbgAssert( u1.size() == I0.size() );
    CV_DbgAssert( u2.size() == I0.size() );
    CV_DbgAssert( grad.size() == I0.size() );
    CV_DbgAssert( rho_c.size() == I0.size() );

    CalcGradRhoBody body;

    body.I0 = I0;
    body.I1w = I1w;
    body.I1wx = I1wx;
    body.I1wy = I1wy;
    body.u1 = u1;
    body.u2 = u2;
    body.grad = grad;
    body.rho_c = rho_c;

    parallel_for_(Range(0, I0.rows), body);
}

////////////////////////////////////////////////////////////
// estimateV

struct EstimateVBody : ParallelLoopBody
{
    void operator() (const Range& range) const;

    Mat_<float> I1wx;
    Mat_<float> I1wy;
    Mat_<float> u1;
    Mat_<float> u2;
    Mat_<float> grad;
    Mat_<float> rho_c;
    mutable Mat_<float> v1;
    mutable Mat_<float> v2;
    float l_t;
};

void EstimateVBody::operator() (const Range& range) const
{
    for (int y = range.start; y < range.end; ++y)
    {
        const float* I1wxRow = I1wx[y];
        const float* I1wyRow = I1wy[y];
        const float* u1Row = u1[y];
        const float* u2Row = u2[y];
        const float* gradRow = grad[y];
        const float* rhoRow = rho_c[y];

        float* v1Row = v1[y];
        float* v2Row = v2[y];

        for (int x = 0; x < I1wx.cols; ++x)
        {
            const float rho = rhoRow[x] + (I1wxRow[x] * u1Row[x] + I1wyRow[x] * u2Row[x]);

            float d1 = 0.0f;
            float d2 = 0.0f;

            if (rho < -l_t * gradRow[x])
            {
                d1 = l_t * I1wxRow[x];
                d2 = l_t * I1wyRow[x];
            }
            else if (rho > l_t * gradRow[x])
            {
                d1 = -l_t * I1wxRow[x];
                d2 = -l_t * I1wyRow[x];
            }
            else if (gradRow[x] > numeric_limits<float>::epsilon())
            {
                float fi = -rho / gradRow[x];
                d1 = fi * I1wxRow[x];
                d2 = fi * I1wyRow[x];
            }

            v1Row[x] = u1Row[x] + d1;
            v2Row[x] = u2Row[x] + d2;
        }
    }
}

void estimateV(const Mat_<float>& I1wx, const Mat_<float>& I1wy, const Mat_<float>& u1, const Mat_<float>& u2, const Mat_<float>& grad, const Mat_<float>& rho_c,
               Mat_<float>& v1, Mat_<float>& v2, float l_t)
{
    CV_DbgAssert( I1wy.size() == I1wx.size() );
    CV_DbgAssert( u1.size() == I1wx.size() );
    CV_DbgAssert( u2.size() == I1wx.size() );
    CV_DbgAssert( grad.size() == I1wx.size() );
    CV_DbgAssert( rho_c.size() == I1wx.size() );
    CV_DbgAssert( v1.size() == I1wx.size() );
    CV_DbgAssert( v2.size() == I1wx.size() );

    EstimateVBody body;

    body.I1wx = I1wx;
    body.I1wy = I1wy;
    body.u1 = u1;
    body.u2 = u2;
    body.grad = grad;
    body.rho_c = rho_c;
    body.v1 = v1;
    body.v2 = v2;
    body.l_t = l_t;

    parallel_for_(Range(0, I1wx.rows), body);
}

////////////////////////////////////////////////////////////
// estimateU

float estimateU(const Mat_<float>& v1, const Mat_<float>& v2, const Mat_<float>& div_p1, const Mat_<float>& div_p2, Mat_<float>& u1, Mat_<float>& u2, float theta)
{
    CV_DbgAssert( v2.size() == v1.size() );
    CV_DbgAssert( div_p1.size() == v1.size() );
    CV_DbgAssert( div_p2.size() == v1.size() );
    CV_DbgAssert( u1.size() == v1.size() );
    CV_DbgAssert( u2.size() == v1.size() );

    float error = 0.0f;
    for (int y = 0; y < v1.rows; ++y)
    {
        const float* v1Row = v1[y];
        const float* v2Row = v2[y];
        const float* divP1Row = div_p1[y];
        const float* divP2Row = div_p2[y];

        float* u1Row = u1[y];
        float* u2Row = u2[y];

        for (int x = 0; x < v1.cols; ++x)
        {
            const float u1k = u1Row[x];
            const float u2k = u2Row[x];

            u1Row[x] = v1Row[x] + theta * divP1Row[x];
            u2Row[x] = v2Row[x] + theta * divP2Row[x];

            error += (u1Row[x] - u1k) * (u1Row[x] - u1k) + (u2Row[x] - u2k) * (u2Row[x] - u2k);
        }
    }

    return error;
}

////////////////////////////////////////////////////////////
// estimateDualVariables

struct EstimateDualVariablesBody : ParallelLoopBody
{
    void operator() (const Range& range) const;

    Mat_<float> u1x;
    Mat_<float> u1y;
    Mat_<float> u2x;
    Mat_<float> u2y;
    mutable Mat_<float> p11;
    mutable Mat_<float> p12;
    mutable Mat_<float> p21;
    mutable Mat_<float> p22;
    float taut;
};

void EstimateDualVariablesBody::operator() (const Range& range) const
{
    for (int y = range.start; y < range.end; ++y)
    {
        const float* u1xRow = u1x[y];
        const float* u1yRow = u1y[y];
        const float* u2xRow = u2x[y];
        const float* u2yRow = u2y[y];

        float* p11Row = p11[y];
        float* p12Row = p12[y];
        float* p21Row = p21[y];
        float* p22Row = p22[y];

        for (int x = 0; x < u1x.cols; ++x)
        {
            const float g1 = static_cast<float>(hypot(u1xRow[x], u1yRow[x]));
            const float g2 = static_cast<float>(hypot(u2xRow[x], u2yRow[x]));

            const float ng1  = 1.0f + taut * g1;
            const float ng2  = 1.0f + taut * g2;

            p11Row[x] = (p11Row[x] + taut * u1xRow[x]) / ng1;
            p12Row[x] = (p12Row[x] + taut * u1yRow[x]) / ng1;
            p21Row[x] = (p21Row[x] + taut * u2xRow[x]) / ng2;
            p22Row[x] = (p22Row[x] + taut * u2yRow[x]) / ng2;
        }
    }
}

void estimateDualVariables(const Mat_<float>& u1x, const Mat_<float>& u1y, const Mat_<float>& u2x, const Mat_<float>& u2y,
                           Mat_<float>& p11, Mat_<float>& p12, Mat_<float>& p21, Mat_<float>& p22, float taut)
{
    CV_DbgAssert( u1y.size() == u1x.size() );
    CV_DbgAssert( u2x.size() == u1x.size() );
    CV_DbgAssert( u2y.size() == u1x.size() );
    CV_DbgAssert( p11.size() == u1x.size() );
    CV_DbgAssert( p12.size() == u1x.size() );
    CV_DbgAssert( p21.size() == u1x.size() );
    CV_DbgAssert( p22.size() == u1x.size() );

    EstimateDualVariablesBody body;

    body.u1x = u1x;
    body.u1y = u1y;
    body.u2x = u2x;
    body.u2y = u2y;
    body.p11 = p11;
    body.p12 = p12;
    body.p21 = p21;
    body.p22 = p22;
    body.taut = taut;

    parallel_for_(Range(0, u1x.rows), body);
}

void OpticalFlowDual_TVL1::procOneScale(const Mat_<float>& I0, const Mat_<float>& I1, Mat_<float>& u1, Mat_<float>& u2)
{
    const float scaledEpsilon = static_cast<float>(epsilon * epsilon * I0.size().area());

    CV_DbgAssert( I1.size() == I0.size() );
    CV_DbgAssert( I1.type() == I0.type() );
    CV_DbgAssert( u1.size() == I0.size() );
    CV_DbgAssert( u2.size() == u1.size() );

    Mat_<float> I1x = I1x_buf(Rect(0, 0, I0.cols, I0.rows));
    Mat_<float> I1y = I1y_buf(Rect(0, 0, I0.cols, I0.rows));
    centeredGradient(I1, I1x, I1y);

    Mat_<float> flowMap1 = flowMap1_buf(Rect(0, 0, I0.cols, I0.rows));
    Mat_<float> flowMap2 = flowMap2_buf(Rect(0, 0, I0.cols, I0.rows));

    Mat_<float> I1w = I1w_buf(Rect(0, 0, I0.cols, I0.rows));
    Mat_<float> I1wx = I1wx_buf(Rect(0, 0, I0.cols, I0.rows));
    Mat_<float> I1wy = I1wy_buf(Rect(0, 0, I0.cols, I0.rows));

    Mat_<float> grad = grad_buf(Rect(0, 0, I0.cols, I0.rows));
    Mat_<float> rho_c = rho_c_buf(Rect(0, 0, I0.cols, I0.rows));

    Mat_<float> v1 = v1_buf(Rect(0, 0, I0.cols, I0.rows));
    Mat_<float> v2 = v2_buf(Rect(0, 0, I0.cols, I0.rows));

    Mat_<float> p11 = p11_buf(Rect(0, 0, I0.cols, I0.rows));
    Mat_<float> p12 = p12_buf(Rect(0, 0, I0.cols, I0.rows));
    Mat_<float> p21 = p21_buf(Rect(0, 0, I0.cols, I0.rows));
    Mat_<float> p22 = p22_buf(Rect(0, 0, I0.cols, I0.rows));
    p11.setTo(Scalar::all(0));
    p12.setTo(Scalar::all(0));
    p21.setTo(Scalar::all(0));
    p22.setTo(Scalar::all(0));

    Mat_<float> div_p1 = div_p1_buf(Rect(0, 0, I0.cols, I0.rows));
    Mat_<float> div_p2 = div_p2_buf(Rect(0, 0, I0.cols, I0.rows));

    Mat_<float> u1x = u1x_buf(Rect(0, 0, I0.cols, I0.rows));
    Mat_<float> u1y = u1y_buf(Rect(0, 0, I0.cols, I0.rows));
    Mat_<float> u2x = u2x_buf(Rect(0, 0, I0.cols, I0.rows));
    Mat_<float> u2y = u2y_buf(Rect(0, 0, I0.cols, I0.rows));

    const float l_t = static_cast<float>(lambda * theta);
    const float taut = static_cast<float>(tau / theta);

    for (int warpings = 0; warpings < warps; ++warpings)
    {
        // compute the warping of the target image and its derivatives
        buildFlowMap(u1, u2, flowMap1, flowMap2);
        remap(I1, I1w, flowMap1, flowMap2, INTER_CUBIC);
        remap(I1x, I1wx, flowMap1, flowMap2, INTER_CUBIC);
        remap(I1y, I1wy, flowMap1, flowMap2, INTER_CUBIC);

        calcGradRho(I0, I1w, I1wx, I1wy, u1, u2, grad, rho_c);

        float error = numeric_limits<float>::max();
        for (int n = 0; error > scaledEpsilon && n < iterations; ++n)
        {
            // estimate the values of the variable (v1, v2) (thresholding operator TH)
            estimateV(I1wx, I1wy, u1, u2, grad, rho_c, v1, v2, l_t);

            // compute the divergence of the dual variable (p1, p2)
            divergence(p11, p12, div_p1);
            divergence(p21, p22, div_p2);

            // estimate the values of the optical flow (u1, u2)
            error = estimateU(v1, v2, div_p1, div_p2, u1, u2, static_cast<float>(theta));

            // compute the gradient of the optical flow (Du1, Du2)
            forwardGradient(u1, u1x, u1y);
            forwardGradient(u2, u2x, u2y);

            // estimate the values of the dual variable (p1, p2)
            estimateDualVariables(u1x, u1y, u2x, u2y, p11, p12, p21, p22, taut);
        }
    }
}

void OpticalFlowDual_TVL1::collectGarbage()
{
    I0s.clear();
    I1s.clear();
    u1s.clear();
    u2s.clear();

    I1x_buf.release();
    I1y_buf.release();

    flowMap1_buf.release();
    flowMap2_buf.release();

    I1w_buf.release();
    I1wx_buf.release();
    I1wy_buf.release();

    grad_buf.release();
    rho_c_buf.release();

    v1_buf.release();
    v2_buf.release();

    p11_buf.release();
    p12_buf.release();
    p21_buf.release();
    p22_buf.release();

    div_p1_buf.release();
    div_p2_buf.release();

    u1x_buf.release();
    u1y_buf.release();
    u2x_buf.release();
    u2y_buf.release();
}

CV_INIT_ALGORITHM(OpticalFlowDual_TVL1, "DenseOpticalFlow.DualTVL1",
                  obj.info()->addParam(obj, "tau", obj.tau, false, 0, 0,
                                       "Time step of the numerical scheme");
                  obj.info()->addParam(obj, "lambda", obj.lambda, false, 0, 0,
                                       "Weight parameter for the data term, attachment parameter");
                  obj.info()->addParam(obj, "theta", obj.theta, false, 0, 0,
                                       "Weight parameter for (u - v)^2, tightness parameter");
                  obj.info()->addParam(obj, "nscales", obj.nscales, false, 0, 0,
                                       "Number of scales used to create the pyramid of images");
                  obj.info()->addParam(obj, "warps", obj.warps, false, 0, 0,
                                       "Number of warpings per scale");
                  obj.info()->addParam(obj, "epsilon", obj.epsilon, false, 0, 0,
                                       "Stopping criterion threshold used in the numerical scheme, which is a trade-off between precision and running time");
                  obj.info()->addParam(obj, "iterations", obj.iterations, false, 0, 0,
                                       "Stopping criterion iterations number used in the numerical scheme");
                  obj.info()->addParam(obj, "useInitialFlow", obj.useInitialFlow))

} // namespace

Ptr<DenseOpticalFlow> cv::createOptFlow_DualTVL1()
{
    return new OpticalFlowDual_TVL1;
}