denoising.cpp 10.2 KB
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#include "precomp.hpp"

using namespace cv;
using namespace cv::gpu;

#if !defined (HAVE_CUDA) || defined (CUDA_DISABLER)

void cv::gpu::bilateralFilter(const GpuMat&, GpuMat&, int, float, float, int, Stream&) { throw_nogpu(); }
void cv::gpu::nonLocalMeans(const GpuMat&, GpuMat&, float, int, int, int, Stream&) { throw_nogpu(); }

void cv::gpu::FastNonLocalMeansDenoising::simpleMethod(const GpuMat&, GpuMat&, float, int, int, Stream&) { throw_nogpu(); }
void cv::gpu::FastNonLocalMeansDenoising::labMethod( const GpuMat&, GpuMat&, float, float, int, int, Stream&) { throw_nogpu(); }


#else

//////////////////////////////////////////////////////////////////////////////////
//// Non Local Means Denosing (brute force)

namespace cv { namespace gpu { namespace device
{
    namespace imgproc
    {
        template<typename T>
        void bilateral_filter_gpu(const PtrStepSzb& src, PtrStepSzb dst, int kernel_size, float sigma_spatial, float sigma_color, int borderMode, cudaStream_t stream);

        template<typename T>
        void nlm_bruteforce_gpu(const PtrStepSzb& src, PtrStepSzb dst, int search_radius, int block_radius, float h, int borderMode, cudaStream_t stream);
    }
}}}

void cv::gpu::bilateralFilter(const GpuMat& src, GpuMat& dst, int kernel_size, float sigma_color, float sigma_spatial, int borderMode, Stream& s)
{
    using cv::gpu::device::imgproc::bilateral_filter_gpu;

    typedef void (*func_t)(const PtrStepSzb& src, PtrStepSzb dst, int kernel_size, float sigma_spatial, float sigma_color, int borderMode, cudaStream_t s);

#ifdef OPENCV_TINY_GPU_MODULE
    static const func_t funcs[6][4] =
    {
        {bilateral_filter_gpu<uchar>       , 0 /*bilateral_filter_gpu<uchar2>*/ , bilateral_filter_gpu<uchar3>       , bilateral_filter_gpu<uchar4>       },
        {0 /*bilateral_filter_gpu<schar>*/ , 0 /*bilateral_filter_gpu<schar2>*/ , 0 /*bilateral_filter_gpu<schar3>*/ , 0 /*bilateral_filter_gpu<schar4>*/ },
        {0 /*bilateral_filter_gpu<ushort>*/, 0 /*bilateral_filter_gpu<ushort2>*/, 0 /*bilateral_filter_gpu<ushort3>*/, 0 /*bilateral_filter_gpu<ushort4>*/},
        {0 /*bilateral_filter_gpu<short>*/ , 0 /*bilateral_filter_gpu<short2>*/ , 0 /*bilateral_filter_gpu<short3>*/ , 0 /*bilateral_filter_gpu<short4>*/ },
        {0 /*bilateral_filter_gpu<int>*/   , 0 /*bilateral_filter_gpu<int2>*/   , 0 /*bilateral_filter_gpu<int3>*/   , 0 /*bilateral_filter_gpu<int4>*/   },
        {bilateral_filter_gpu<float>       , 0 /*bilateral_filter_gpu<float2>*/ , bilateral_filter_gpu<float3>       , bilateral_filter_gpu<float4>       }
    };
#else
    static const func_t funcs[6][4] =
    {
        {bilateral_filter_gpu<uchar>      , 0 /*bilateral_filter_gpu<uchar2>*/ , bilateral_filter_gpu<uchar3>      , bilateral_filter_gpu<uchar4>      },
        {0 /*bilateral_filter_gpu<schar>*/, 0 /*bilateral_filter_gpu<schar2>*/ , 0 /*bilateral_filter_gpu<schar3>*/, 0 /*bilateral_filter_gpu<schar4>*/},
        {bilateral_filter_gpu<ushort>     , 0 /*bilateral_filter_gpu<ushort2>*/, bilateral_filter_gpu<ushort3>     , bilateral_filter_gpu<ushort4>     },
        {bilateral_filter_gpu<short>      , 0 /*bilateral_filter_gpu<short2>*/ , bilateral_filter_gpu<short3>      , bilateral_filter_gpu<short4>      },
        {0 /*bilateral_filter_gpu<int>*/  , 0 /*bilateral_filter_gpu<int2>*/   , 0 /*bilateral_filter_gpu<int3>*/  , 0 /*bilateral_filter_gpu<int4>*/  },
        {bilateral_filter_gpu<float>      , 0 /*bilateral_filter_gpu<float2>*/ , bilateral_filter_gpu<float3>      , bilateral_filter_gpu<float4>      }
    };
#endif

    sigma_color = (sigma_color <= 0 ) ? 1 : sigma_color;
    sigma_spatial = (sigma_spatial <= 0 ) ? 1 : sigma_spatial;


    int radius = (kernel_size <= 0) ? cvRound(sigma_spatial*1.5) : kernel_size/2;
    kernel_size = std::max(radius, 1)*2 + 1;

    CV_Assert(src.depth() <= CV_32F && src.channels() <= 4);
    const func_t func = funcs[src.depth()][src.channels() - 1];
    CV_Assert(func != 0);

    CV_Assert(borderMode == BORDER_REFLECT101 || borderMode == BORDER_REPLICATE || borderMode == BORDER_CONSTANT || borderMode == BORDER_REFLECT || borderMode == BORDER_WRAP);

    int gpuBorderType;
    CV_Assert(tryConvertToGpuBorderType(borderMode, gpuBorderType));

    dst.create(src.size(), src.type());
    func(src, dst, kernel_size, sigma_spatial, sigma_color, gpuBorderType, StreamAccessor::getStream(s));
}

void cv::gpu::nonLocalMeans(const GpuMat& src, GpuMat& dst, float h, int search_window, int block_window, int borderMode, Stream& s)
{
    using cv::gpu::device::imgproc::nlm_bruteforce_gpu;
    typedef void (*func_t)(const PtrStepSzb& src, PtrStepSzb dst, int search_radius, int block_radius, float h, int borderMode, cudaStream_t stream);

    static const func_t funcs[4] = { nlm_bruteforce_gpu<uchar>, nlm_bruteforce_gpu<uchar2>, nlm_bruteforce_gpu<uchar3>, 0/*nlm_bruteforce_gpu<uchar4>,*/ };

    CV_Assert(src.type() == CV_8U || src.type() == CV_8UC2 || src.type() == CV_8UC3);

    const func_t func = funcs[src.channels() - 1];
    CV_Assert(func != 0);

    int b = borderMode;
    CV_Assert(b == BORDER_REFLECT101 || b == BORDER_REPLICATE || b == BORDER_CONSTANT || b == BORDER_REFLECT || b == BORDER_WRAP);

    int gpuBorderType;
    CV_Assert(tryConvertToGpuBorderType(borderMode, gpuBorderType));

    dst.create(src.size(), src.type());
    func(src, dst, search_window/2, block_window/2, h, gpuBorderType, StreamAccessor::getStream(s));
}


//////////////////////////////////////////////////////////////////////////////////
//// Non Local Means Denosing (fast approxinate)


namespace cv { namespace gpu { namespace device
{
    namespace imgproc
    {
        void nln_fast_get_buffer_size(const PtrStepSzb& src, int search_window, int block_window, int& buffer_cols, int& buffer_rows);

        template<typename T>
        void nlm_fast_gpu(const PtrStepSzb& src, PtrStepSzb dst, PtrStepi buffer,
                          int search_window, int block_window, float h, cudaStream_t stream);

        void fnlm_split_channels(const PtrStepSz<uchar3>& lab, PtrStepb l, PtrStep<uchar2> ab, cudaStream_t stream);
        void fnlm_merge_channels(const PtrStepb& l, const PtrStep<uchar2>& ab, PtrStepSz<uchar3> lab, cudaStream_t stream);
     }
}}}

void cv::gpu::FastNonLocalMeansDenoising::simpleMethod(const GpuMat& src, GpuMat& dst, float h, int search_window, int block_window, Stream& s)
{
    CV_Assert(src.depth() == CV_8U && src.channels() < 4);

    int border_size = search_window/2 + block_window/2;
    Size esize = src.size() + Size(border_size, border_size) * 2;

    cv::gpu::ensureSizeIsEnough(esize, CV_8UC3, extended_src_buffer);
    GpuMat extended_src(esize, src.type(), extended_src_buffer.ptr(), extended_src_buffer.step);

    cv::gpu::copyMakeBorder(src, extended_src, border_size, border_size, border_size, border_size, cv::BORDER_DEFAULT, Scalar(), s);
    GpuMat src_hdr = extended_src(Rect(Point2i(border_size, border_size), src.size()));

    int bcols, brows;
    device::imgproc::nln_fast_get_buffer_size(src_hdr, search_window, block_window, bcols, brows);
    buffer.create(brows, bcols, CV_32S);

    using namespace cv::gpu::device::imgproc;
    typedef void (*nlm_fast_t)(const PtrStepSzb&, PtrStepSzb, PtrStepi, int, int, float, cudaStream_t);
    static const nlm_fast_t funcs[] = { nlm_fast_gpu<uchar>, nlm_fast_gpu<uchar2>, nlm_fast_gpu<uchar3>, 0};

    dst.create(src.size(), src.type());
    funcs[src.channels()-1](src_hdr, dst, buffer, search_window, block_window, h, StreamAccessor::getStream(s));
}

void cv::gpu::FastNonLocalMeansDenoising::labMethod( const GpuMat& src, GpuMat& dst, float h_luminance, float h_color, int search_window, int block_window, Stream& s)
{
    CV_Assert(src.type() == CV_8UC3);

    lab.create(src.size(), src.type());
    cv::gpu::cvtColor(src, lab, CV_BGR2Lab, 0, s);

    l.create(src.size(), CV_8U);
    ab.create(src.size(), CV_8UC2);
    device::imgproc::fnlm_split_channels(lab, l, ab, StreamAccessor::getStream(s));

    simpleMethod(l, l, h_luminance, search_window, block_window, s);
    simpleMethod(ab, ab, h_color, search_window, block_window, s);

    device::imgproc::fnlm_merge_channels(l, ab, lab, StreamAccessor::getStream(s));
    cv::gpu::cvtColor(lab, dst, CV_Lab2BGR, 0, s);
}


#endif