1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#if !defined CUDA_DISABLER
#include "internal_shared.hpp"
namespace cv { namespace gpu { namespace device
{
namespace stereobm
{
//////////////////////////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////// Stereo BM ////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////////////////////////
#define ROWSperTHREAD 21 // the number of rows a thread will process
#define BLOCK_W 128 // the thread block width (464)
#define N_DISPARITIES 8
#define STEREO_MIND 0 // The minimum d range to check
#define STEREO_DISP_STEP N_DISPARITIES // the d step, must be <= 1 to avoid aliasing
__constant__ unsigned int* cminSSDImage;
__constant__ size_t cminSSD_step;
__constant__ int cwidth;
__constant__ int cheight;
__device__ __forceinline__ int SQ(int a)
{
return a * a;
}
template<int RADIUS>
__device__ unsigned int CalcSSD(volatile unsigned int *col_ssd_cache, volatile unsigned int *col_ssd)
{
unsigned int cache = 0;
unsigned int cache2 = 0;
for(int i = 1; i <= RADIUS; i++)
cache += col_ssd[i];
col_ssd_cache[0] = cache;
__syncthreads();
if (threadIdx.x < BLOCK_W - RADIUS)
cache2 = col_ssd_cache[RADIUS];
else
for(int i = RADIUS + 1; i < (2 * RADIUS + 1); i++)
cache2 += col_ssd[i];
return col_ssd[0] + cache + cache2;
}
template<int RADIUS>
__device__ uint2 MinSSD(volatile unsigned int *col_ssd_cache, volatile unsigned int *col_ssd)
{
unsigned int ssd[N_DISPARITIES];
//See above: #define COL_SSD_SIZE (BLOCK_W + 2 * RADIUS)
ssd[0] = CalcSSD<RADIUS>(col_ssd_cache, col_ssd + 0 * (BLOCK_W + 2 * RADIUS));
__syncthreads();
ssd[1] = CalcSSD<RADIUS>(col_ssd_cache, col_ssd + 1 * (BLOCK_W + 2 * RADIUS));
__syncthreads();
ssd[2] = CalcSSD<RADIUS>(col_ssd_cache, col_ssd + 2 * (BLOCK_W + 2 * RADIUS));
__syncthreads();
ssd[3] = CalcSSD<RADIUS>(col_ssd_cache, col_ssd + 3 * (BLOCK_W + 2 * RADIUS));
__syncthreads();
ssd[4] = CalcSSD<RADIUS>(col_ssd_cache, col_ssd + 4 * (BLOCK_W + 2 * RADIUS));
__syncthreads();
ssd[5] = CalcSSD<RADIUS>(col_ssd_cache, col_ssd + 5 * (BLOCK_W + 2 * RADIUS));
__syncthreads();
ssd[6] = CalcSSD<RADIUS>(col_ssd_cache, col_ssd + 6 * (BLOCK_W + 2 * RADIUS));
__syncthreads();
ssd[7] = CalcSSD<RADIUS>(col_ssd_cache, col_ssd + 7 * (BLOCK_W + 2 * RADIUS));
int mssd = ::min(::min(::min(ssd[0], ssd[1]), ::min(ssd[4], ssd[5])), ::min(::min(ssd[2], ssd[3]), ::min(ssd[6], ssd[7])));
int bestIdx = 0;
for (int i = 0; i < N_DISPARITIES; i++)
{
if (mssd == ssd[i])
bestIdx = i;
}
return make_uint2(mssd, bestIdx);
}
template<int RADIUS>
__device__ void StepDown(int idx1, int idx2, unsigned char* imageL, unsigned char* imageR, int d, volatile unsigned int *col_ssd)
{
unsigned char leftPixel1;
unsigned char leftPixel2;
unsigned char rightPixel1[8];
unsigned char rightPixel2[8];
unsigned int diff1, diff2;
leftPixel1 = imageL[idx1];
leftPixel2 = imageL[idx2];
idx1 = idx1 - d;
idx2 = idx2 - d;
rightPixel1[7] = imageR[idx1 - 7];
rightPixel1[0] = imageR[idx1 - 0];
rightPixel1[1] = imageR[idx1 - 1];
rightPixel1[2] = imageR[idx1 - 2];
rightPixel1[3] = imageR[idx1 - 3];
rightPixel1[4] = imageR[idx1 - 4];
rightPixel1[5] = imageR[idx1 - 5];
rightPixel1[6] = imageR[idx1 - 6];
rightPixel2[7] = imageR[idx2 - 7];
rightPixel2[0] = imageR[idx2 - 0];
rightPixel2[1] = imageR[idx2 - 1];
rightPixel2[2] = imageR[idx2 - 2];
rightPixel2[3] = imageR[idx2 - 3];
rightPixel2[4] = imageR[idx2 - 4];
rightPixel2[5] = imageR[idx2 - 5];
rightPixel2[6] = imageR[idx2 - 6];
//See above: #define COL_SSD_SIZE (BLOCK_W + 2 * RADIUS)
diff1 = leftPixel1 - rightPixel1[0];
diff2 = leftPixel2 - rightPixel2[0];
col_ssd[0 * (BLOCK_W + 2 * RADIUS)] += SQ(diff2) - SQ(diff1);
diff1 = leftPixel1 - rightPixel1[1];
diff2 = leftPixel2 - rightPixel2[1];
col_ssd[1 * (BLOCK_W + 2 * RADIUS)] += SQ(diff2) - SQ(diff1);
diff1 = leftPixel1 - rightPixel1[2];
diff2 = leftPixel2 - rightPixel2[2];
col_ssd[2 * (BLOCK_W + 2 * RADIUS)] += SQ(diff2) - SQ(diff1);
diff1 = leftPixel1 - rightPixel1[3];
diff2 = leftPixel2 - rightPixel2[3];
col_ssd[3 * (BLOCK_W + 2 * RADIUS)] += SQ(diff2) - SQ(diff1);
diff1 = leftPixel1 - rightPixel1[4];
diff2 = leftPixel2 - rightPixel2[4];
col_ssd[4 * (BLOCK_W + 2 * RADIUS)] += SQ(diff2) - SQ(diff1);
diff1 = leftPixel1 - rightPixel1[5];
diff2 = leftPixel2 - rightPixel2[5];
col_ssd[5 * (BLOCK_W + 2 * RADIUS)] += SQ(diff2) - SQ(diff1);
diff1 = leftPixel1 - rightPixel1[6];
diff2 = leftPixel2 - rightPixel2[6];
col_ssd[6 * (BLOCK_W + 2 * RADIUS)] += SQ(diff2) - SQ(diff1);
diff1 = leftPixel1 - rightPixel1[7];
diff2 = leftPixel2 - rightPixel2[7];
col_ssd[7 * (BLOCK_W + 2 * RADIUS)] += SQ(diff2) - SQ(diff1);
}
template<int RADIUS>
__device__ void InitColSSD(int x_tex, int y_tex, int im_pitch, unsigned char* imageL, unsigned char* imageR, int d, volatile unsigned int *col_ssd)
{
unsigned char leftPixel1;
int idx;
unsigned int diffa[] = {0, 0, 0, 0, 0, 0, 0, 0};
for(int i = 0; i < (2 * RADIUS + 1); i++)
{
idx = y_tex * im_pitch + x_tex;
leftPixel1 = imageL[idx];
idx = idx - d;
diffa[0] += SQ(leftPixel1 - imageR[idx - 0]);
diffa[1] += SQ(leftPixel1 - imageR[idx - 1]);
diffa[2] += SQ(leftPixel1 - imageR[idx - 2]);
diffa[3] += SQ(leftPixel1 - imageR[idx - 3]);
diffa[4] += SQ(leftPixel1 - imageR[idx - 4]);
diffa[5] += SQ(leftPixel1 - imageR[idx - 5]);
diffa[6] += SQ(leftPixel1 - imageR[idx - 6]);
diffa[7] += SQ(leftPixel1 - imageR[idx - 7]);
y_tex += 1;
}
//See above: #define COL_SSD_SIZE (BLOCK_W + 2 * RADIUS)
col_ssd[0 * (BLOCK_W + 2 * RADIUS)] = diffa[0];
col_ssd[1 * (BLOCK_W + 2 * RADIUS)] = diffa[1];
col_ssd[2 * (BLOCK_W + 2 * RADIUS)] = diffa[2];
col_ssd[3 * (BLOCK_W + 2 * RADIUS)] = diffa[3];
col_ssd[4 * (BLOCK_W + 2 * RADIUS)] = diffa[4];
col_ssd[5 * (BLOCK_W + 2 * RADIUS)] = diffa[5];
col_ssd[6 * (BLOCK_W + 2 * RADIUS)] = diffa[6];
col_ssd[7 * (BLOCK_W + 2 * RADIUS)] = diffa[7];
}
template<int RADIUS>
__global__ void stereoKernel(unsigned char *left, unsigned char *right, size_t img_step, PtrStepb disp, int maxdisp)
{
extern __shared__ unsigned int col_ssd_cache[];
volatile unsigned int *col_ssd = col_ssd_cache + BLOCK_W + threadIdx.x;
volatile unsigned int *col_ssd_extra = threadIdx.x < (2 * RADIUS) ? col_ssd + BLOCK_W : 0; //#define N_DIRTY_PIXELS (2 * RADIUS)
//#define X (blockIdx.x * BLOCK_W + threadIdx.x + STEREO_MAXD)
int X = (blockIdx.x * BLOCK_W + threadIdx.x + maxdisp + RADIUS);
//#define Y (__mul24(blockIdx.y, ROWSperTHREAD) + RADIUS)
#define Y (blockIdx.y * ROWSperTHREAD + RADIUS)
//int Y = blockIdx.y * ROWSperTHREAD + RADIUS;
unsigned int* minSSDImage = cminSSDImage + X + Y * cminSSD_step;
unsigned char* disparImage = disp.data + X + Y * disp.step;
/* if (X < cwidth)
{
unsigned int *minSSDImage_end = minSSDImage + min(ROWSperTHREAD, cheight - Y) * minssd_step;
for(uint *ptr = minSSDImage; ptr != minSSDImage_end; ptr += minssd_step )
*ptr = 0xFFFFFFFF;
}*/
int end_row = ::min(ROWSperTHREAD, cheight - Y - RADIUS);
int y_tex;
int x_tex = X - RADIUS;
if (x_tex >= cwidth)
return;
for(int d = STEREO_MIND; d < maxdisp; d += STEREO_DISP_STEP)
{
y_tex = Y - RADIUS;
InitColSSD<RADIUS>(x_tex, y_tex, img_step, left, right, d, col_ssd);
if (col_ssd_extra > 0)
if (x_tex + BLOCK_W < cwidth)
InitColSSD<RADIUS>(x_tex + BLOCK_W, y_tex, img_step, left, right, d, col_ssd_extra);
__syncthreads(); //before MinSSD function
if (X < cwidth - RADIUS && Y < cheight - RADIUS)
{
uint2 minSSD = MinSSD<RADIUS>(col_ssd_cache + threadIdx.x, col_ssd);
if (minSSD.x < minSSDImage[0])
{
disparImage[0] = (unsigned char)(d + minSSD.y);
minSSDImage[0] = minSSD.x;
}
}
for(int row = 1; row < end_row; row++)
{
int idx1 = y_tex * img_step + x_tex;
int idx2 = (y_tex + (2 * RADIUS + 1)) * img_step + x_tex;
__syncthreads();
StepDown<RADIUS>(idx1, idx2, left, right, d, col_ssd);
if (col_ssd_extra)
if (x_tex + BLOCK_W < cwidth)
StepDown<RADIUS>(idx1, idx2, left + BLOCK_W, right + BLOCK_W, d, col_ssd_extra);
y_tex += 1;
__syncthreads(); //before MinSSD function
if (X < cwidth - RADIUS && row < cheight - RADIUS - Y)
{
int idx = row * cminSSD_step;
uint2 minSSD = MinSSD<RADIUS>(col_ssd_cache + threadIdx.x, col_ssd);
if (minSSD.x < minSSDImage[idx])
{
disparImage[disp.step * row] = (unsigned char)(d + minSSD.y);
minSSDImage[idx] = minSSD.x;
}
}
} // for row loop
} // for d loop
}
template<int RADIUS> void kernel_caller(const PtrStepSzb& left, const PtrStepSzb& right, const PtrStepSzb& disp, int maxdisp, cudaStream_t & stream)
{
dim3 grid(1,1,1);
dim3 threads(BLOCK_W, 1, 1);
grid.x = divUp(left.cols - maxdisp - 2 * RADIUS, BLOCK_W);
grid.y = divUp(left.rows - 2 * RADIUS, ROWSperTHREAD);
//See above: #define COL_SSD_SIZE (BLOCK_W + 2 * RADIUS)
size_t smem_size = (BLOCK_W + N_DISPARITIES * (BLOCK_W + 2 * RADIUS)) * sizeof(unsigned int);
stereoKernel<RADIUS><<<grid, threads, smem_size, stream>>>(left.data, right.data, left.step, disp, maxdisp);
cudaSafeCall( cudaGetLastError() );
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
};
typedef void (*kernel_caller_t)(const PtrStepSzb& left, const PtrStepSzb& right, const PtrStepSzb& disp, int maxdisp, cudaStream_t & stream);
#ifdef OPENCV_TINY_GPU_MODULE
const static kernel_caller_t callers[] =
{
0,
kernel_caller< 1>,
kernel_caller< 2>,
kernel_caller< 3>,
kernel_caller< 4>,
kernel_caller< 5>,
0/*kernel_caller< 6>*/,
0/*kernel_caller< 7>*/,
0/*kernel_caller< 8>*/,
kernel_caller< 9>,
0/*kernel_caller<10>*/,
0/*kernel_caller<11>*/,
0/*kernel_caller<12>*/,
0/*kernel_caller<13>*/,
0/*kernel_caller<14>*/,
kernel_caller<15>,
0/*kernel_caller<16>*/,
0/*kernel_caller<17>*/,
0/*kernel_caller<18>*/,
0/*kernel_caller<19>*/,
0/*kernel_caller<20>*/,
0/*kernel_caller<21>*/,
0/*kernel_caller<22>*/,
0/*kernel_caller<23>*/,
0/*kernel_caller<24>*/,
0/*kernel_caller<25>*/,
};
#else
const static kernel_caller_t callers[] =
{
0,
kernel_caller< 1>, kernel_caller< 2>, kernel_caller< 3>, kernel_caller< 4>, kernel_caller< 5>,
kernel_caller< 6>, kernel_caller< 7>, kernel_caller< 8>, kernel_caller< 9>, kernel_caller<10>,
kernel_caller<11>, kernel_caller<12>, kernel_caller<13>, kernel_caller<14>, kernel_caller<15>,
kernel_caller<16>, kernel_caller<17>, kernel_caller<18>, kernel_caller<19>, kernel_caller<20>,
kernel_caller<21>, kernel_caller<22>, kernel_caller<23>, kernel_caller<24>, kernel_caller<25>
};
#endif
const int calles_num = sizeof(callers)/sizeof(callers[0]);
void stereoBM_GPU(const PtrStepSzb& left, const PtrStepSzb& right, const PtrStepSzb& disp, int maxdisp, int winsz, const PtrStepSz<unsigned int>& minSSD_buf, cudaStream_t& stream)
{
int winsz2 = winsz >> 1;
if (winsz2 == 0 || winsz2 >= calles_num || callers[winsz2] == 0)
cv::gpu::error("Unsupported window size", __FILE__, __LINE__, "stereoBM_GPU");
//cudaSafeCall( cudaFuncSetCacheConfig(&stereoKernel, cudaFuncCachePreferL1) );
//cudaSafeCall( cudaFuncSetCacheConfig(&stereoKernel, cudaFuncCachePreferShared) );
cudaSafeCall( cudaMemset2D(disp.data, disp.step, 0, disp.cols, disp.rows) );
cudaSafeCall( cudaMemset2D(minSSD_buf.data, minSSD_buf.step, 0xFF, minSSD_buf.cols * minSSD_buf.elemSize(), disp.rows) );
cudaSafeCall( cudaMemcpyToSymbol( cwidth, &left.cols, sizeof(left.cols) ) );
cudaSafeCall( cudaMemcpyToSymbol( cheight, &left.rows, sizeof(left.rows) ) );
cudaSafeCall( cudaMemcpyToSymbol( cminSSDImage, &minSSD_buf.data, sizeof(minSSD_buf.data) ) );
size_t minssd_step = minSSD_buf.step/minSSD_buf.elemSize();
cudaSafeCall( cudaMemcpyToSymbol( cminSSD_step, &minssd_step, sizeof(minssd_step) ) );
callers[winsz2](left, right, disp, maxdisp, stream);
}
//////////////////////////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////// Sobel Prefiler ///////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////////////////////////
texture<unsigned char, 2, cudaReadModeElementType> texForSobel;
__global__ void prefilter_kernel(PtrStepSzb output, int prefilterCap)
{
int x = blockDim.x * blockIdx.x + threadIdx.x;
int y = blockDim.y * blockIdx.y + threadIdx.y;
if (x < output.cols && y < output.rows)
{
int conv = (int)tex2D(texForSobel, x - 1, y - 1) * (-1) + (int)tex2D(texForSobel, x + 1, y - 1) * (1) +
(int)tex2D(texForSobel, x - 1, y ) * (-2) + (int)tex2D(texForSobel, x + 1, y ) * (2) +
(int)tex2D(texForSobel, x - 1, y + 1) * (-1) + (int)tex2D(texForSobel, x + 1, y + 1) * (1);
conv = ::min(::min(::max(-prefilterCap, conv), prefilterCap) + prefilterCap, 255);
output.ptr(y)[x] = conv & 0xFF;
}
}
void prefilter_xsobel(const PtrStepSzb& input, const PtrStepSzb& output, int prefilterCap, cudaStream_t & stream)
{
cudaChannelFormatDesc desc = cudaCreateChannelDesc<unsigned char>();
cudaSafeCall( cudaBindTexture2D( 0, texForSobel, input.data, desc, input.cols, input.rows, input.step ) );
dim3 threads(16, 16, 1);
dim3 grid(1, 1, 1);
grid.x = divUp(input.cols, threads.x);
grid.y = divUp(input.rows, threads.y);
prefilter_kernel<<<grid, threads, 0, stream>>>(output, prefilterCap);
cudaSafeCall( cudaGetLastError() );
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
cudaSafeCall( cudaUnbindTexture (texForSobel ) );
}
//////////////////////////////////////////////////////////////////////////////////////////////////
/////////////////////////////////// Textureness filtering ////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////////////////////////
texture<unsigned char, 2, cudaReadModeNormalizedFloat> texForTF;
__device__ __forceinline__ float sobel(int x, int y)
{
float conv = tex2D(texForTF, x - 1, y - 1) * (-1) + tex2D(texForTF, x + 1, y - 1) * (1) +
tex2D(texForTF, x - 1, y ) * (-2) + tex2D(texForTF, x + 1, y ) * (2) +
tex2D(texForTF, x - 1, y + 1) * (-1) + tex2D(texForTF, x + 1, y + 1) * (1);
return fabs(conv);
}
__device__ float CalcSums(float *cols, float *cols_cache, int winsz)
{
float cache = 0;
float cache2 = 0;
int winsz2 = winsz/2;
for(int i = 1; i <= winsz2; i++)
cache += cols[i];
cols_cache[0] = cache;
__syncthreads();
if (threadIdx.x < blockDim.x - winsz2)
cache2 = cols_cache[winsz2];
else
for(int i = winsz2 + 1; i < winsz; i++)
cache2 += cols[i];
return cols[0] + cache + cache2;
}
#define RpT (2 * ROWSperTHREAD) // got experimentally
__global__ void textureness_kernel(PtrStepSzb disp, int winsz, float threshold)
{
int winsz2 = winsz/2;
int n_dirty_pixels = (winsz2) * 2;
extern __shared__ float cols_cache[];
float *cols = cols_cache + blockDim.x + threadIdx.x;
float *cols_extra = threadIdx.x < n_dirty_pixels ? cols + blockDim.x : 0;
int x = blockIdx.x * blockDim.x + threadIdx.x;
int beg_row = blockIdx.y * RpT;
int end_row = ::min(beg_row + RpT, disp.rows);
if (x < disp.cols)
{
int y = beg_row;
float sum = 0;
float sum_extra = 0;
for(int i = y - winsz2; i <= y + winsz2; ++i)
{
sum += sobel(x - winsz2, i);
if (cols_extra)
sum_extra += sobel(x + blockDim.x - winsz2, i);
}
*cols = sum;
if (cols_extra)
*cols_extra = sum_extra;
__syncthreads();
float sum_win = CalcSums(cols, cols_cache + threadIdx.x, winsz) * 255;
if (sum_win < threshold)
disp.data[y * disp.step + x] = 0;
__syncthreads();
for(int y = beg_row + 1; y < end_row; ++y)
{
sum = sum - sobel(x - winsz2, y - winsz2 - 1) + sobel(x - winsz2, y + winsz2);
*cols = sum;
if (cols_extra)
{
sum_extra = sum_extra - sobel(x + blockDim.x - winsz2, y - winsz2 - 1) + sobel(x + blockDim.x - winsz2, y + winsz2);
*cols_extra = sum_extra;
}
__syncthreads();
float sum_win = CalcSums(cols, cols_cache + threadIdx.x, winsz) * 255;
if (sum_win < threshold)
disp.data[y * disp.step + x] = 0;
__syncthreads();
}
}
}
void postfilter_textureness(const PtrStepSzb& input, int winsz, float avgTexturenessThreshold, const PtrStepSzb& disp, cudaStream_t & stream)
{
avgTexturenessThreshold *= winsz * winsz;
texForTF.filterMode = cudaFilterModeLinear;
texForTF.addressMode[0] = cudaAddressModeWrap;
texForTF.addressMode[1] = cudaAddressModeWrap;
cudaChannelFormatDesc desc = cudaCreateChannelDesc<unsigned char>();
cudaSafeCall( cudaBindTexture2D( 0, texForTF, input.data, desc, input.cols, input.rows, input.step ) );
dim3 threads(128, 1, 1);
dim3 grid(1, 1, 1);
grid.x = divUp(input.cols, threads.x);
grid.y = divUp(input.rows, RpT);
size_t smem_size = (threads.x + threads.x + (winsz/2) * 2 ) * sizeof(float);
textureness_kernel<<<grid, threads, smem_size, stream>>>(disp, winsz, avgTexturenessThreshold);
cudaSafeCall( cudaGetLastError() );
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
cudaSafeCall( cudaUnbindTexture (texForTF) );
}
} // namespace stereobm
}}} // namespace cv { namespace gpu { namespace device
#endif /* CUDA_DISABLER */