1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#if !defined CUDA_DISABLER
#include "opencv2/gpu/device/common.hpp"
#include "opencv2/gpu/device/reduce.hpp"
#include "opencv2/gpu/device/functional.hpp"
#include "opencv2/gpu/device/warp_shuffle.hpp"
namespace cv { namespace gpu { namespace device
{
// Other values are not supported
#define CELL_WIDTH 8
#define CELL_HEIGHT 8
#define CELLS_PER_BLOCK_X 2
#define CELLS_PER_BLOCK_Y 2
namespace hog
{
__constant__ int cnbins;
__constant__ int cblock_stride_x;
__constant__ int cblock_stride_y;
__constant__ int cnblocks_win_x;
__constant__ int cnblocks_win_y;
__constant__ int cblock_hist_size;
__constant__ int cblock_hist_size_2up;
__constant__ int cdescr_size;
__constant__ int cdescr_width;
/* Returns the nearest upper power of two, works only for
the typical GPU thread count (pert block) values */
int power_2up(unsigned int n)
{
if (n < 1) return 1;
else if (n < 2) return 2;
else if (n < 4) return 4;
else if (n < 8) return 8;
else if (n < 16) return 16;
else if (n < 32) return 32;
else if (n < 64) return 64;
else if (n < 128) return 128;
else if (n < 256) return 256;
else if (n < 512) return 512;
else if (n < 1024) return 1024;
return -1; // Input is too big
}
void set_up_constants(int nbins, int block_stride_x, int block_stride_y,
int nblocks_win_x, int nblocks_win_y)
{
cudaSafeCall( cudaMemcpyToSymbol(cnbins, &nbins, sizeof(nbins)) );
cudaSafeCall( cudaMemcpyToSymbol(cblock_stride_x, &block_stride_x, sizeof(block_stride_x)) );
cudaSafeCall( cudaMemcpyToSymbol(cblock_stride_y, &block_stride_y, sizeof(block_stride_y)) );
cudaSafeCall( cudaMemcpyToSymbol(cnblocks_win_x, &nblocks_win_x, sizeof(nblocks_win_x)) );
cudaSafeCall( cudaMemcpyToSymbol(cnblocks_win_y, &nblocks_win_y, sizeof(nblocks_win_y)) );
int block_hist_size = nbins * CELLS_PER_BLOCK_X * CELLS_PER_BLOCK_Y;
cudaSafeCall( cudaMemcpyToSymbol(cblock_hist_size, &block_hist_size, sizeof(block_hist_size)) );
int block_hist_size_2up = power_2up(block_hist_size);
cudaSafeCall( cudaMemcpyToSymbol(cblock_hist_size_2up, &block_hist_size_2up, sizeof(block_hist_size_2up)) );
int descr_width = nblocks_win_x * block_hist_size;
cudaSafeCall( cudaMemcpyToSymbol(cdescr_width, &descr_width, sizeof(descr_width)) );
int descr_size = descr_width * nblocks_win_y;
cudaSafeCall( cudaMemcpyToSymbol(cdescr_size, &descr_size, sizeof(descr_size)) );
}
//----------------------------------------------------------------------------
// Histogram computation
template <int nblocks> // Number of histogram blocks processed by single GPU thread block
__global__ void compute_hists_kernel_many_blocks(const int img_block_width, const PtrStepf grad,
const PtrStepb qangle, float scale, float* block_hists)
{
const int block_x = threadIdx.z;
const int cell_x = threadIdx.x / 16;
const int cell_y = threadIdx.y;
const int cell_thread_x = threadIdx.x & 0xF;
if (blockIdx.x * blockDim.z + block_x >= img_block_width)
return;
extern __shared__ float smem[];
float* hists = smem;
float* final_hist = smem + cnbins * 48 * nblocks;
const int offset_x = (blockIdx.x * blockDim.z + block_x) * cblock_stride_x +
4 * cell_x + cell_thread_x;
const int offset_y = blockIdx.y * cblock_stride_y + 4 * cell_y;
const float* grad_ptr = grad.ptr(offset_y) + offset_x * 2;
const unsigned char* qangle_ptr = qangle.ptr(offset_y) + offset_x * 2;
// 12 means that 12 pixels affect on block's cell (in one row)
if (cell_thread_x < 12)
{
float* hist = hists + 12 * (cell_y * blockDim.z * CELLS_PER_BLOCK_Y +
cell_x + block_x * CELLS_PER_BLOCK_X) +
cell_thread_x;
for (int bin_id = 0; bin_id < cnbins; ++bin_id)
hist[bin_id * 48 * nblocks] = 0.f;
const int dist_x = -4 + (int)cell_thread_x - 4 * cell_x;
const int dist_y_begin = -4 - 4 * (int)threadIdx.y;
for (int dist_y = dist_y_begin; dist_y < dist_y_begin + 12; ++dist_y)
{
float2 vote = *(const float2*)grad_ptr;
uchar2 bin = *(const uchar2*)qangle_ptr;
grad_ptr += grad.step/sizeof(float);
qangle_ptr += qangle.step;
int dist_center_y = dist_y - 4 * (1 - 2 * cell_y);
int dist_center_x = dist_x - 4 * (1 - 2 * cell_x);
float gaussian = ::expf(-(dist_center_y * dist_center_y +
dist_center_x * dist_center_x) * scale);
float interp_weight = (8.f - ::fabs(dist_y + 0.5f)) *
(8.f - ::fabs(dist_x + 0.5f)) / 64.f;
hist[bin.x * 48 * nblocks] += gaussian * interp_weight * vote.x;
hist[bin.y * 48 * nblocks] += gaussian * interp_weight * vote.y;
}
volatile float* hist_ = hist;
for (int bin_id = 0; bin_id < cnbins; ++bin_id, hist_ += 48 * nblocks)
{
if (cell_thread_x < 6) hist_[0] += hist_[6];
if (cell_thread_x < 3) hist_[0] += hist_[3];
if (cell_thread_x == 0)
final_hist[((cell_x + block_x * 2) * 2 + cell_y) * cnbins + bin_id]
= hist_[0] + hist_[1] + hist_[2];
}
}
__syncthreads();
float* block_hist = block_hists + (blockIdx.y * img_block_width +
blockIdx.x * blockDim.z + block_x) *
cblock_hist_size;
int tid = (cell_y * CELLS_PER_BLOCK_Y + cell_x) * 16 + cell_thread_x;
if (tid < cblock_hist_size)
block_hist[tid] = final_hist[block_x * cblock_hist_size + tid];
}
void compute_hists(int nbins, int block_stride_x, int block_stride_y,
int height, int width, const PtrStepSzf& grad,
const PtrStepSzb& qangle, float sigma, float* block_hists)
{
const int nblocks = 1;
int img_block_width = (width - CELLS_PER_BLOCK_X * CELL_WIDTH + block_stride_x) /
block_stride_x;
int img_block_height = (height - CELLS_PER_BLOCK_Y * CELL_HEIGHT + block_stride_y) /
block_stride_y;
dim3 grid(divUp(img_block_width, nblocks), img_block_height);
dim3 threads(32, 2, nblocks);
cudaSafeCall(cudaFuncSetCacheConfig(compute_hists_kernel_many_blocks<nblocks>,
cudaFuncCachePreferL1));
// Precompute gaussian spatial window parameter
float scale = 1.f / (2.f * sigma * sigma);
int hists_size = (nbins * CELLS_PER_BLOCK_X * CELLS_PER_BLOCK_Y * 12 * nblocks) * sizeof(float);
int final_hists_size = (nbins * CELLS_PER_BLOCK_X * CELLS_PER_BLOCK_Y * nblocks) * sizeof(float);
int smem = hists_size + final_hists_size;
compute_hists_kernel_many_blocks<nblocks><<<grid, threads, smem>>>(
img_block_width, grad, qangle, scale, block_hists);
cudaSafeCall( cudaGetLastError() );
cudaSafeCall( cudaDeviceSynchronize() );
}
//-------------------------------------------------------------
// Normalization of histograms via L2Hys_norm
//
template<int size>
__device__ float reduce_smem(float* smem, float val)
{
unsigned int tid = threadIdx.x;
float sum = val;
reduce<size>(smem, sum, tid, plus<float>());
if (size == 32)
{
#if __CUDA_ARCH__ >= 300
return shfl(sum, 0);
#else
return smem[0];
#endif
}
else
{
#if __CUDA_ARCH__ >= 300
if (threadIdx.x == 0)
smem[0] = sum;
#endif
__syncthreads();
return smem[0];
}
}
template <int nthreads, // Number of threads which process one block historgam
int nblocks> // Number of block hisograms processed by one GPU thread block
__global__ void normalize_hists_kernel_many_blocks(const int block_hist_size,
const int img_block_width,
float* block_hists, float threshold)
{
if (blockIdx.x * blockDim.z + threadIdx.z >= img_block_width)
return;
float* hist = block_hists + (blockIdx.y * img_block_width +
blockIdx.x * blockDim.z + threadIdx.z) *
block_hist_size + threadIdx.x;
__shared__ float sh_squares[nthreads * nblocks];
float* squares = sh_squares + threadIdx.z * nthreads;
float elem = 0.f;
if (threadIdx.x < block_hist_size)
elem = hist[0];
float sum = reduce_smem<nthreads>(squares, elem * elem);
float scale = 1.0f / (::sqrtf(sum) + 0.1f * block_hist_size);
elem = ::min(elem * scale, threshold);
sum = reduce_smem<nthreads>(squares, elem * elem);
scale = 1.0f / (::sqrtf(sum) + 1e-3f);
if (threadIdx.x < block_hist_size)
hist[0] = elem * scale;
}
void normalize_hists(int nbins, int block_stride_x, int block_stride_y,
int height, int width, float* block_hists, float threshold)
{
const int nblocks = 1;
int block_hist_size = nbins * CELLS_PER_BLOCK_X * CELLS_PER_BLOCK_Y;
int nthreads = power_2up(block_hist_size);
dim3 threads(nthreads, 1, nblocks);
int img_block_width = (width - CELLS_PER_BLOCK_X * CELL_WIDTH + block_stride_x) / block_stride_x;
int img_block_height = (height - CELLS_PER_BLOCK_Y * CELL_HEIGHT + block_stride_y) / block_stride_y;
dim3 grid(divUp(img_block_width, nblocks), img_block_height);
if (nthreads == 32)
normalize_hists_kernel_many_blocks<32, nblocks><<<grid, threads>>>(block_hist_size, img_block_width, block_hists, threshold);
else if (nthreads == 64)
normalize_hists_kernel_many_blocks<64, nblocks><<<grid, threads>>>(block_hist_size, img_block_width, block_hists, threshold);
else if (nthreads == 128)
normalize_hists_kernel_many_blocks<64, nblocks><<<grid, threads>>>(block_hist_size, img_block_width, block_hists, threshold);
else if (nthreads == 256)
normalize_hists_kernel_many_blocks<256, nblocks><<<grid, threads>>>(block_hist_size, img_block_width, block_hists, threshold);
else if (nthreads == 512)
normalize_hists_kernel_many_blocks<512, nblocks><<<grid, threads>>>(block_hist_size, img_block_width, block_hists, threshold);
else
cv::gpu::error("normalize_hists: histogram's size is too big, try to decrease number of bins", __FILE__, __LINE__, "normalize_hists");
cudaSafeCall( cudaGetLastError() );
cudaSafeCall( cudaDeviceSynchronize() );
}
//---------------------------------------------------------------------
// Linear SVM based classification
//
// return confidence values not just positive location
template <int nthreads, // Number of threads per one histogram block
int nblocks> // Number of histogram block processed by single GPU thread block
__global__ void compute_confidence_hists_kernel_many_blocks(const int img_win_width, const int img_block_width,
const int win_block_stride_x, const int win_block_stride_y,
const float* block_hists, const float* coefs,
float free_coef, float threshold, float* confidences)
{
const int win_x = threadIdx.z;
if (blockIdx.x * blockDim.z + win_x >= img_win_width)
return;
const float* hist = block_hists + (blockIdx.y * win_block_stride_y * img_block_width +
blockIdx.x * win_block_stride_x * blockDim.z + win_x) *
cblock_hist_size;
float product = 0.f;
for (int i = threadIdx.x; i < cdescr_size; i += nthreads)
{
int offset_y = i / cdescr_width;
int offset_x = i - offset_y * cdescr_width;
product += coefs[i] * hist[offset_y * img_block_width * cblock_hist_size + offset_x];
}
__shared__ float products[nthreads * nblocks];
const int tid = threadIdx.z * nthreads + threadIdx.x;
reduce<nthreads>(products, product, tid, plus<float>());
if (threadIdx.x == 0)
confidences[blockIdx.y * img_win_width + blockIdx.x * blockDim.z + win_x] = product + free_coef;
}
void compute_confidence_hists(int win_height, int win_width, int block_stride_y, int block_stride_x,
int win_stride_y, int win_stride_x, int height, int width, float* block_hists,
float* coefs, float free_coef, float threshold, float *confidences)
{
const int nthreads = 256;
const int nblocks = 1;
int win_block_stride_x = win_stride_x / block_stride_x;
int win_block_stride_y = win_stride_y / block_stride_y;
int img_win_width = (width - win_width + win_stride_x) / win_stride_x;
int img_win_height = (height - win_height + win_stride_y) / win_stride_y;
dim3 threads(nthreads, 1, nblocks);
dim3 grid(divUp(img_win_width, nblocks), img_win_height);
cudaSafeCall(cudaFuncSetCacheConfig(compute_confidence_hists_kernel_many_blocks<nthreads, nblocks>,
cudaFuncCachePreferL1));
int img_block_width = (width - CELLS_PER_BLOCK_X * CELL_WIDTH + block_stride_x) /
block_stride_x;
compute_confidence_hists_kernel_many_blocks<nthreads, nblocks><<<grid, threads>>>(
img_win_width, img_block_width, win_block_stride_x, win_block_stride_y,
block_hists, coefs, free_coef, threshold, confidences);
cudaSafeCall(cudaThreadSynchronize());
}
template <int nthreads, // Number of threads per one histogram block
int nblocks> // Number of histogram block processed by single GPU thread block
__global__ void classify_hists_kernel_many_blocks(const int img_win_width, const int img_block_width,
const int win_block_stride_x, const int win_block_stride_y,
const float* block_hists, const float* coefs,
float free_coef, float threshold, unsigned char* labels)
{
const int win_x = threadIdx.z;
if (blockIdx.x * blockDim.z + win_x >= img_win_width)
return;
const float* hist = block_hists + (blockIdx.y * win_block_stride_y * img_block_width +
blockIdx.x * win_block_stride_x * blockDim.z + win_x) *
cblock_hist_size;
float product = 0.f;
for (int i = threadIdx.x; i < cdescr_size; i += nthreads)
{
int offset_y = i / cdescr_width;
int offset_x = i - offset_y * cdescr_width;
product += coefs[i] * hist[offset_y * img_block_width * cblock_hist_size + offset_x];
}
__shared__ float products[nthreads * nblocks];
const int tid = threadIdx.z * nthreads + threadIdx.x;
reduce<nthreads>(products, product, tid, plus<float>());
if (threadIdx.x == 0)
labels[blockIdx.y * img_win_width + blockIdx.x * blockDim.z + win_x] = (product + free_coef >= threshold);
}
void classify_hists(int win_height, int win_width, int block_stride_y, int block_stride_x,
int win_stride_y, int win_stride_x, int height, int width, float* block_hists,
float* coefs, float free_coef, float threshold, unsigned char* labels)
{
const int nthreads = 256;
const int nblocks = 1;
int win_block_stride_x = win_stride_x / block_stride_x;
int win_block_stride_y = win_stride_y / block_stride_y;
int img_win_width = (width - win_width + win_stride_x) / win_stride_x;
int img_win_height = (height - win_height + win_stride_y) / win_stride_y;
dim3 threads(nthreads, 1, nblocks);
dim3 grid(divUp(img_win_width, nblocks), img_win_height);
cudaSafeCall(cudaFuncSetCacheConfig(classify_hists_kernel_many_blocks<nthreads, nblocks>, cudaFuncCachePreferL1));
int img_block_width = (width - CELLS_PER_BLOCK_X * CELL_WIDTH + block_stride_x) / block_stride_x;
classify_hists_kernel_many_blocks<nthreads, nblocks><<<grid, threads>>>(
img_win_width, img_block_width, win_block_stride_x, win_block_stride_y,
block_hists, coefs, free_coef, threshold, labels);
cudaSafeCall( cudaGetLastError() );
cudaSafeCall( cudaDeviceSynchronize() );
}
//----------------------------------------------------------------------------
// Extract descriptors
template <int nthreads>
__global__ void extract_descrs_by_rows_kernel(const int img_block_width, const int win_block_stride_x, const int win_block_stride_y,
const float* block_hists, PtrStepf descriptors)
{
// Get left top corner of the window in src
const float* hist = block_hists + (blockIdx.y * win_block_stride_y * img_block_width +
blockIdx.x * win_block_stride_x) * cblock_hist_size;
// Get left top corner of the window in dst
float* descriptor = descriptors.ptr(blockIdx.y * gridDim.x + blockIdx.x);
// Copy elements from src to dst
for (int i = threadIdx.x; i < cdescr_size; i += nthreads)
{
int offset_y = i / cdescr_width;
int offset_x = i - offset_y * cdescr_width;
descriptor[i] = hist[offset_y * img_block_width * cblock_hist_size + offset_x];
}
}
void extract_descrs_by_rows(int win_height, int win_width, int block_stride_y, int block_stride_x, int win_stride_y, int win_stride_x,
int height, int width, float* block_hists, PtrStepSzf descriptors)
{
const int nthreads = 256;
int win_block_stride_x = win_stride_x / block_stride_x;
int win_block_stride_y = win_stride_y / block_stride_y;
int img_win_width = (width - win_width + win_stride_x) / win_stride_x;
int img_win_height = (height - win_height + win_stride_y) / win_stride_y;
dim3 threads(nthreads, 1);
dim3 grid(img_win_width, img_win_height);
int img_block_width = (width - CELLS_PER_BLOCK_X * CELL_WIDTH + block_stride_x) / block_stride_x;
extract_descrs_by_rows_kernel<nthreads><<<grid, threads>>>(
img_block_width, win_block_stride_x, win_block_stride_y, block_hists, descriptors);
cudaSafeCall( cudaGetLastError() );
cudaSafeCall( cudaDeviceSynchronize() );
}
template <int nthreads>
__global__ void extract_descrs_by_cols_kernel(const int img_block_width, const int win_block_stride_x,
const int win_block_stride_y, const float* block_hists,
PtrStepf descriptors)
{
// Get left top corner of the window in src
const float* hist = block_hists + (blockIdx.y * win_block_stride_y * img_block_width +
blockIdx.x * win_block_stride_x) * cblock_hist_size;
// Get left top corner of the window in dst
float* descriptor = descriptors.ptr(blockIdx.y * gridDim.x + blockIdx.x);
// Copy elements from src to dst
for (int i = threadIdx.x; i < cdescr_size; i += nthreads)
{
int block_idx = i / cblock_hist_size;
int idx_in_block = i - block_idx * cblock_hist_size;
int y = block_idx / cnblocks_win_x;
int x = block_idx - y * cnblocks_win_x;
descriptor[(x * cnblocks_win_y + y) * cblock_hist_size + idx_in_block]
= hist[(y * img_block_width + x) * cblock_hist_size + idx_in_block];
}
}
void extract_descrs_by_cols(int win_height, int win_width, int block_stride_y, int block_stride_x,
int win_stride_y, int win_stride_x, int height, int width, float* block_hists,
PtrStepSzf descriptors)
{
const int nthreads = 256;
int win_block_stride_x = win_stride_x / block_stride_x;
int win_block_stride_y = win_stride_y / block_stride_y;
int img_win_width = (width - win_width + win_stride_x) / win_stride_x;
int img_win_height = (height - win_height + win_stride_y) / win_stride_y;
dim3 threads(nthreads, 1);
dim3 grid(img_win_width, img_win_height);
int img_block_width = (width - CELLS_PER_BLOCK_X * CELL_WIDTH + block_stride_x) / block_stride_x;
extract_descrs_by_cols_kernel<nthreads><<<grid, threads>>>(
img_block_width, win_block_stride_x, win_block_stride_y, block_hists, descriptors);
cudaSafeCall( cudaGetLastError() );
cudaSafeCall( cudaDeviceSynchronize() );
}
//----------------------------------------------------------------------------
// Gradients computation
template <int nthreads, int correct_gamma>
__global__ void compute_gradients_8UC4_kernel(int height, int width, const PtrStepb img,
float angle_scale, PtrStepf grad, PtrStepb qangle)
{
const int x = blockIdx.x * blockDim.x + threadIdx.x;
const uchar4* row = (const uchar4*)img.ptr(blockIdx.y);
__shared__ float sh_row[(nthreads + 2) * 3];
uchar4 val;
if (x < width)
val = row[x];
else
val = row[width - 2];
sh_row[threadIdx.x + 1] = val.x;
sh_row[threadIdx.x + 1 + (nthreads + 2)] = val.y;
sh_row[threadIdx.x + 1 + 2 * (nthreads + 2)] = val.z;
if (threadIdx.x == 0)
{
val = row[::max(x - 1, 1)];
sh_row[0] = val.x;
sh_row[(nthreads + 2)] = val.y;
sh_row[2 * (nthreads + 2)] = val.z;
}
if (threadIdx.x == blockDim.x - 1)
{
val = row[::min(x + 1, width - 2)];
sh_row[blockDim.x + 1] = val.x;
sh_row[blockDim.x + 1 + (nthreads + 2)] = val.y;
sh_row[blockDim.x + 1 + 2 * (nthreads + 2)] = val.z;
}
__syncthreads();
if (x < width)
{
float3 a, b;
b.x = sh_row[threadIdx.x + 2];
b.y = sh_row[threadIdx.x + 2 + (nthreads + 2)];
b.z = sh_row[threadIdx.x + 2 + 2 * (nthreads + 2)];
a.x = sh_row[threadIdx.x];
a.y = sh_row[threadIdx.x + (nthreads + 2)];
a.z = sh_row[threadIdx.x + 2 * (nthreads + 2)];
float3 dx;
if (correct_gamma)
dx = make_float3(::sqrtf(b.x) - ::sqrtf(a.x), ::sqrtf(b.y) - ::sqrtf(a.y), ::sqrtf(b.z) - ::sqrtf(a.z));
else
dx = make_float3(b.x - a.x, b.y - a.y, b.z - a.z);
float3 dy = make_float3(0.f, 0.f, 0.f);
if (blockIdx.y > 0 && blockIdx.y < height - 1)
{
val = ((const uchar4*)img.ptr(blockIdx.y - 1))[x];
a = make_float3(val.x, val.y, val.z);
val = ((const uchar4*)img.ptr(blockIdx.y + 1))[x];
b = make_float3(val.x, val.y, val.z);
if (correct_gamma)
dy = make_float3(::sqrtf(b.x) - ::sqrtf(a.x), ::sqrtf(b.y) - ::sqrtf(a.y), ::sqrtf(b.z) - ::sqrtf(a.z));
else
dy = make_float3(b.x - a.x, b.y - a.y, b.z - a.z);
}
float best_dx = dx.x;
float best_dy = dy.x;
float mag0 = dx.x * dx.x + dy.x * dy.x;
float mag1 = dx.y * dx.y + dy.y * dy.y;
if (mag0 < mag1)
{
best_dx = dx.y;
best_dy = dy.y;
mag0 = mag1;
}
mag1 = dx.z * dx.z + dy.z * dy.z;
if (mag0 < mag1)
{
best_dx = dx.z;
best_dy = dy.z;
mag0 = mag1;
}
mag0 = ::sqrtf(mag0);
float ang = (::atan2f(best_dy, best_dx) + CV_PI_F) * angle_scale - 0.5f;
int hidx = (int)::floorf(ang);
ang -= hidx;
hidx = (hidx + cnbins) % cnbins;
((uchar2*)qangle.ptr(blockIdx.y))[x] = make_uchar2(hidx, (hidx + 1) % cnbins);
((float2*)grad.ptr(blockIdx.y))[x] = make_float2(mag0 * (1.f - ang), mag0 * ang);
}
}
void compute_gradients_8UC4(int nbins, int height, int width, const PtrStepSzb& img,
float angle_scale, PtrStepSzf grad, PtrStepSzb qangle, bool correct_gamma)
{
(void)nbins;
const int nthreads = 256;
dim3 bdim(nthreads, 1);
dim3 gdim(divUp(width, bdim.x), divUp(height, bdim.y));
if (correct_gamma)
compute_gradients_8UC4_kernel<nthreads, 1><<<gdim, bdim>>>(height, width, img, angle_scale, grad, qangle);
else
compute_gradients_8UC4_kernel<nthreads, 0><<<gdim, bdim>>>(height, width, img, angle_scale, grad, qangle);
cudaSafeCall( cudaGetLastError() );
cudaSafeCall( cudaDeviceSynchronize() );
}
template <int nthreads, int correct_gamma>
__global__ void compute_gradients_8UC1_kernel(int height, int width, const PtrStepb img,
float angle_scale, PtrStepf grad, PtrStepb qangle)
{
const int x = blockIdx.x * blockDim.x + threadIdx.x;
const unsigned char* row = (const unsigned char*)img.ptr(blockIdx.y);
__shared__ float sh_row[nthreads + 2];
if (x < width)
sh_row[threadIdx.x + 1] = row[x];
else
sh_row[threadIdx.x + 1] = row[width - 2];
if (threadIdx.x == 0)
sh_row[0] = row[::max(x - 1, 1)];
if (threadIdx.x == blockDim.x - 1)
sh_row[blockDim.x + 1] = row[::min(x + 1, width - 2)];
__syncthreads();
if (x < width)
{
float dx;
if (correct_gamma)
dx = ::sqrtf(sh_row[threadIdx.x + 2]) - ::sqrtf(sh_row[threadIdx.x]);
else
dx = sh_row[threadIdx.x + 2] - sh_row[threadIdx.x];
float dy = 0.f;
if (blockIdx.y > 0 && blockIdx.y < height - 1)
{
float a = ((const unsigned char*)img.ptr(blockIdx.y + 1))[x];
float b = ((const unsigned char*)img.ptr(blockIdx.y - 1))[x];
if (correct_gamma)
dy = ::sqrtf(a) - ::sqrtf(b);
else
dy = a - b;
}
float mag = ::sqrtf(dx * dx + dy * dy);
float ang = (::atan2f(dy, dx) + CV_PI_F) * angle_scale - 0.5f;
int hidx = (int)::floorf(ang);
ang -= hidx;
hidx = (hidx + cnbins) % cnbins;
((uchar2*)qangle.ptr(blockIdx.y))[x] = make_uchar2(hidx, (hidx + 1) % cnbins);
((float2*) grad.ptr(blockIdx.y))[x] = make_float2(mag * (1.f - ang), mag * ang);
}
}
void compute_gradients_8UC1(int nbins, int height, int width, const PtrStepSzb& img,
float angle_scale, PtrStepSzf grad, PtrStepSzb qangle, bool correct_gamma)
{
(void)nbins;
const int nthreads = 256;
dim3 bdim(nthreads, 1);
dim3 gdim(divUp(width, bdim.x), divUp(height, bdim.y));
if (correct_gamma)
compute_gradients_8UC1_kernel<nthreads, 1><<<gdim, bdim>>>(height, width, img, angle_scale, grad, qangle);
else
compute_gradients_8UC1_kernel<nthreads, 0><<<gdim, bdim>>>(height, width, img, angle_scale, grad, qangle);
cudaSafeCall( cudaGetLastError() );
cudaSafeCall( cudaDeviceSynchronize() );
}
//-------------------------------------------------------------------
// Resize
texture<uchar4, 2, cudaReadModeNormalizedFloat> resize8UC4_tex;
texture<uchar, 2, cudaReadModeNormalizedFloat> resize8UC1_tex;
__global__ void resize_for_hog_kernel(float sx, float sy, PtrStepSz<uchar> dst, int colOfs)
{
unsigned int x = blockIdx.x * blockDim.x + threadIdx.x;
unsigned int y = blockIdx.y * blockDim.y + threadIdx.y;
if (x < dst.cols && y < dst.rows)
dst.ptr(y)[x] = tex2D(resize8UC1_tex, x * sx + colOfs, y * sy) * 255;
}
__global__ void resize_for_hog_kernel(float sx, float sy, PtrStepSz<uchar4> dst, int colOfs)
{
unsigned int x = blockIdx.x * blockDim.x + threadIdx.x;
unsigned int y = blockIdx.y * blockDim.y + threadIdx.y;
if (x < dst.cols && y < dst.rows)
{
float4 val = tex2D(resize8UC4_tex, x * sx + colOfs, y * sy);
dst.ptr(y)[x] = make_uchar4(val.x * 255, val.y * 255, val.z * 255, val.w * 255);
}
}
template<class T, class TEX>
static void resize_for_hog(const PtrStepSzb& src, PtrStepSzb dst, TEX& tex)
{
tex.filterMode = cudaFilterModeLinear;
size_t texOfs = 0;
int colOfs = 0;
cudaChannelFormatDesc desc = cudaCreateChannelDesc<T>();
cudaSafeCall( cudaBindTexture2D(&texOfs, tex, src.data, desc, src.cols, src.rows, src.step) );
if (texOfs != 0)
{
colOfs = static_cast<int>( texOfs/sizeof(T) );
cudaSafeCall( cudaUnbindTexture(tex) );
cudaSafeCall( cudaBindTexture2D(&texOfs, tex, src.data, desc, src.cols, src.rows, src.step) );
}
dim3 threads(32, 8);
dim3 grid(divUp(dst.cols, threads.x), divUp(dst.rows, threads.y));
float sx = static_cast<float>(src.cols) / dst.cols;
float sy = static_cast<float>(src.rows) / dst.rows;
resize_for_hog_kernel<<<grid, threads>>>(sx, sy, (PtrStepSz<T>)dst, colOfs);
cudaSafeCall( cudaGetLastError() );
cudaSafeCall( cudaDeviceSynchronize() );
cudaSafeCall( cudaUnbindTexture(tex) );
}
void resize_8UC1(const PtrStepSzb& src, PtrStepSzb dst) { resize_for_hog<uchar> (src, dst, resize8UC1_tex); }
void resize_8UC4(const PtrStepSzb& src, PtrStepSzb dst) { resize_for_hog<uchar4>(src, dst, resize8UC4_tex); }
} // namespace hog
}}} // namespace cv { namespace gpu { namespace device
#endif /* CUDA_DISABLER */