1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
// The "Square Detector" program.
// It loads several images sequentially and tries to find squares in
// each image
#include "opencv2/core.hpp"
#include "opencv2/core/ocl.hpp"
#include "opencv2/core/utility.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/highgui/highgui.hpp"
#include <iostream>
#include <string.h>
using namespace cv;
using namespace std;
int thresh = 50, N = 11;
const char* wndname = "Square Detection Demo";
// helper function:
// finds a cosine of angle between vectors
// from pt0->pt1 and from pt0->pt2
static double angle( Point pt1, Point pt2, Point pt0 )
{
double dx1 = pt1.x - pt0.x;
double dy1 = pt1.y - pt0.y;
double dx2 = pt2.x - pt0.x;
double dy2 = pt2.y - pt0.y;
return (dx1*dx2 + dy1*dy2)/sqrt((dx1*dx1 + dy1*dy1)*(dx2*dx2 + dy2*dy2) + 1e-10);
}
// returns sequence of squares detected on the image.
// the sequence is stored in the specified memory storage
static void findSquares( const UMat& image, vector<vector<Point> >& squares )
{
squares.clear();
UMat pyr, timg, gray0(image.size(), CV_8U), gray;
// down-scale and upscale the image to filter out the noise
pyrDown(image, pyr, Size(image.cols/2, image.rows/2));
pyrUp(pyr, timg, image.size());
vector<vector<Point> > contours;
// find squares in every color plane of the image
for( int c = 0; c < 3; c++ )
{
int ch[] = {c, 0};
mixChannels(timg, gray0, ch, 1);
// try several threshold levels
for( int l = 0; l < N; l++ )
{
// hack: use Canny instead of zero threshold level.
// Canny helps to catch squares with gradient shading
if( l == 0 )
{
// apply Canny. Take the upper threshold from slider
// and set the lower to 0 (which forces edges merging)
Canny(gray0, gray, 0, thresh, 5);
// dilate canny output to remove potential
// holes between edge segments
dilate(gray, gray, UMat(), Point(-1,-1));
}
else
{
// apply threshold if l!=0:
// tgray(x,y) = gray(x,y) < (l+1)*255/N ? 255 : 0
cv::threshold(gray0, gray, (l+1)*255/N, 255, THRESH_BINARY);
}
// find contours and store them all as a list
findContours(gray, contours, RETR_LIST, CHAIN_APPROX_SIMPLE);
vector<Point> approx;
// test each contour
for( size_t i = 0; i < contours.size(); i++ )
{
// approximate contour with accuracy proportional
// to the contour perimeter
approxPolyDP(Mat(contours[i]), approx, arcLength(Mat(contours[i]), true)*0.02, true);
// square contours should have 4 vertices after approximation
// relatively large area (to filter out noisy contours)
// and be convex.
// Note: absolute value of an area is used because
// area may be positive or negative - in accordance with the
// contour orientation
if( approx.size() == 4 &&
fabs(contourArea(Mat(approx))) > 1000 &&
isContourConvex(Mat(approx)) )
{
double maxCosine = 0;
for( int j = 2; j < 5; j++ )
{
// find the maximum cosine of the angle between joint edges
double cosine = fabs(angle(approx[j%4], approx[j-2], approx[j-1]));
maxCosine = MAX(maxCosine, cosine);
}
// if cosines of all angles are small
// (all angles are ~90 degree) then write quandrange
// vertices to resultant sequence
if( maxCosine < 0.3 )
squares.push_back(approx);
}
}
}
}
}
// the function draws all the squares in the image
static void drawSquares( UMat& _image, const vector<vector<Point> >& squares )
{
Mat image = _image.getMat(ACCESS_WRITE);
for( size_t i = 0; i < squares.size(); i++ )
{
const Point* p = &squares[i][0];
int n = (int)squares[i].size();
polylines(image, &p, &n, 1, true, Scalar(0,255,0), 3, LINE_AA);
}
}
// draw both pure-C++ and ocl square results onto a single image
static UMat drawSquaresBoth( const UMat& image,
const vector<vector<Point> >& sqs)
{
UMat imgToShow(Size(image.cols, image.rows), image.type());
image.copyTo(imgToShow);
drawSquares(imgToShow, sqs);
return imgToShow;
}
int main(int argc, char** argv)
{
const char* keys =
"{ i input | ../data/pic1.png | specify input image }"
"{ o output | squares_output.jpg | specify output save path}"
"{ h help | false | print help message }"
"{ m cpu_mode | false | run without OpenCL }";
CommandLineParser cmd(argc, argv, keys);
if(cmd.has("help"))
{
cout << "Usage : squares [options]" << endl;
cout << "Available options:" << endl;
cmd.printMessage();
return EXIT_SUCCESS;
}
if (cmd.has("cpu_mode"))
{
ocl::setUseOpenCL(false);
std::cout << "OpenCL was disabled" << std::endl;
}
string inputName = cmd.get<string>("i");
string outfile = cmd.get<string>("o");
int iterations = 10;
namedWindow( wndname, WINDOW_AUTOSIZE );
vector<vector<Point> > squares;
UMat image;
imread(inputName, 1).copyTo(image);
if( image.empty() )
{
cout << "Couldn't load " << inputName << endl;
cmd.printMessage();
return EXIT_FAILURE;
}
int j = iterations;
int64 t_cpp = 0;
//warm-ups
cout << "warming up ..." << endl;
findSquares(image, squares);
do
{
int64 t_start = cv::getTickCount();
findSquares(image, squares);
t_cpp += cv::getTickCount() - t_start;
t_start = cv::getTickCount();
cout << "run loop: " << j << endl;
}
while(--j);
cout << "average time: " << 1000.0f * (double)t_cpp / getTickFrequency() / iterations << "ms" << endl;
UMat result = drawSquaresBoth(image, squares);
imshow(wndname, result);
imwrite(outfile, result);
waitKey(0);
return EXIT_SUCCESS;
}