mathfunc.cu 8.87 KB
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#if !defined CUDA_DISABLER

#include "internal_shared.hpp"

namespace cv { namespace gpu { namespace device
{
    namespace mathfunc
    {
        //////////////////////////////////////////////////////////////////////////////////////
        // Cart <-> Polar

        struct Nothing
        {
            static __device__ __forceinline__ void calc(int, int, float, float, float*, size_t, float)
            {
            }
        };
        struct Magnitude
        {
            static __device__ __forceinline__ void calc(int x, int y, float x_data, float y_data, float* dst, size_t dst_step, float)
            {
                dst[y * dst_step + x] = ::sqrtf(x_data * x_data + y_data * y_data);
            }
        };
        struct MagnitudeSqr
        {
            static __device__ __forceinline__ void calc(int x, int y, float x_data, float y_data, float* dst, size_t dst_step, float)
            {
                dst[y * dst_step + x] = x_data * x_data + y_data * y_data;
            }
        };
        struct Atan2
        {
            static __device__ __forceinline__ void calc(int x, int y, float x_data, float y_data, float* dst, size_t dst_step, float scale)
            {
                float angle = ::atan2f(y_data, x_data);
                angle += (angle < 0) * 2.0f * CV_PI_F;
                dst[y * dst_step + x] = scale * angle;
            }
        };
        template <typename Mag, typename Angle>
        __global__ void cartToPolar(const float* xptr, size_t x_step, const float* yptr, size_t y_step,
                                    float* mag, size_t mag_step, float* angle, size_t angle_step, float scale, int width, int height)
        {
            const int x = blockDim.x * blockIdx.x + threadIdx.x;
            const int y = blockDim.y * blockIdx.y + threadIdx.y;

            if (x < width && y < height)
            {
                float x_data = xptr[y * x_step + x];
                float y_data = yptr[y * y_step + x];

                Mag::calc(x, y, x_data, y_data, mag, mag_step, scale);
                Angle::calc(x, y, x_data, y_data, angle, angle_step, scale);
            }
        }

        struct NonEmptyMag
        {
            static __device__ __forceinline__ float get(const float* mag, size_t mag_step, int x, int y)
            {
                return mag[y * mag_step + x];
            }
        };
        struct EmptyMag
        {
            static __device__ __forceinline__ float get(const float*, size_t, int, int)
            {
                return 1.0f;
            }
        };
        template <typename Mag>
        __global__ void polarToCart(const float* mag, size_t mag_step, const float* angle, size_t angle_step, float scale,
            float* xptr, size_t x_step, float* yptr, size_t y_step, int width, int height)
        {
            const int x = blockDim.x * blockIdx.x + threadIdx.x;
            const int y = blockDim.y * blockIdx.y + threadIdx.y;

            if (x < width && y < height)
            {
                float mag_data = Mag::get(mag, mag_step, x, y);
                float angle_data = angle[y * angle_step + x];
                float sin_a, cos_a;

                ::sincosf(scale * angle_data, &sin_a, &cos_a);

                xptr[y * x_step + x] = mag_data * cos_a;
                yptr[y * y_step + x] = mag_data * sin_a;
            }
        }

        template <typename Mag, typename Angle>
        void cartToPolar_caller(PtrStepSzf x, PtrStepSzf y, PtrStepSzf mag, PtrStepSzf angle, bool angleInDegrees, cudaStream_t stream)
        {
            dim3 threads(32, 8, 1);
            dim3 grid(1, 1, 1);

            grid.x = divUp(x.cols, threads.x);
            grid.y = divUp(x.rows, threads.y);

            const float scale = angleInDegrees ? (180.0f / CV_PI_F) : 1.f;

            cartToPolar<Mag, Angle><<<grid, threads, 0, stream>>>(
                x.data, x.step/x.elemSize(), y.data, y.step/y.elemSize(),
                mag.data, mag.step/mag.elemSize(), angle.data, angle.step/angle.elemSize(), scale, x.cols, x.rows);
            cudaSafeCall( cudaGetLastError() );

            if (stream == 0)
                cudaSafeCall( cudaDeviceSynchronize() );
        }

        void cartToPolar_gpu(PtrStepSzf x, PtrStepSzf y, PtrStepSzf mag, bool magSqr, PtrStepSzf angle, bool angleInDegrees, cudaStream_t stream)
        {
            typedef void (*caller_t)(PtrStepSzf x, PtrStepSzf y, PtrStepSzf mag, PtrStepSzf angle, bool angleInDegrees, cudaStream_t stream);
            static const caller_t callers[2][2][2] =
            {
                {
                    {
                        cartToPolar_caller<Magnitude, Atan2>,
                        cartToPolar_caller<Magnitude, Nothing>
                    },
                    {
                        cartToPolar_caller<MagnitudeSqr, Atan2>,
                        cartToPolar_caller<MagnitudeSqr, Nothing>,
                    }
                },
                {
                    {
                        cartToPolar_caller<Nothing, Atan2>,
                        cartToPolar_caller<Nothing, Nothing>
                    },
                    {
                        cartToPolar_caller<Nothing, Atan2>,
                        cartToPolar_caller<Nothing, Nothing>,
                    }
                }
            };

            callers[mag.data == 0][magSqr][angle.data == 0](x, y, mag, angle, angleInDegrees, stream);
        }

        template <typename Mag>
        void polarToCart_caller(PtrStepSzf mag, PtrStepSzf angle, PtrStepSzf x, PtrStepSzf y, bool angleInDegrees, cudaStream_t stream)
        {
            dim3 threads(32, 8, 1);
            dim3 grid(1, 1, 1);

            grid.x = divUp(mag.cols, threads.x);
            grid.y = divUp(mag.rows, threads.y);

            const float scale = angleInDegrees ? (CV_PI_F / 180.0f) : 1.0f;

            polarToCart<Mag><<<grid, threads, 0, stream>>>(mag.data, mag.step/mag.elemSize(),
                angle.data, angle.step/angle.elemSize(), scale, x.data, x.step/x.elemSize(), y.data, y.step/y.elemSize(), mag.cols, mag.rows);
            cudaSafeCall( cudaGetLastError() );

            if (stream == 0)
                cudaSafeCall( cudaDeviceSynchronize() );
        }

        void polarToCart_gpu(PtrStepSzf mag, PtrStepSzf angle, PtrStepSzf x, PtrStepSzf y, bool angleInDegrees, cudaStream_t stream)
        {
            typedef void (*caller_t)(PtrStepSzf mag, PtrStepSzf angle, PtrStepSzf x, PtrStepSzf y, bool angleInDegrees, cudaStream_t stream);
            static const caller_t callers[2] =
            {
                polarToCart_caller<NonEmptyMag>,
                polarToCart_caller<EmptyMag>
            };

            callers[mag.data == 0](mag, angle, x, y, angleInDegrees, stream);
        }
    } // namespace mathfunc
}}} // namespace cv { namespace gpu { namespace device

#endif /* CUDA_DISABLER */