ts_perf.cpp 52 KB
Newer Older
wester committed
1 2 3
#include "precomp.hpp"

#ifdef HAVE_CUDA
wester committed
4
#include "opencv2/core/gpumat.hpp"
wester committed
5 6
#endif

a  
Kai Westerkamp committed
7
#ifdef ANDROID
wester committed
8 9 10 11 12 13 14 15 16 17 18 19 20 21
# include <sys/time.h>
#endif

using namespace perf;

int64 TestBase::timeLimitDefault = 0;
unsigned int TestBase::iterationsLimitDefault = (unsigned int)(-1);
int64 TestBase::_timeadjustment = 0;

// Item [0] will be considered the default implementation.
static std::vector<std::string> available_impls;

static std::string  param_impl;

wester committed
22
static enum PERF_STRATEGY param_strategy = PERF_STRATEGY_BASE;
wester committed
23 24 25 26 27

static double       param_max_outliers;
static double       param_max_deviation;
static unsigned int param_min_samples;
static unsigned int param_force_samples;
a  
Kai Westerkamp committed
28
static uint64       param_seed;
wester committed
29 30 31 32 33 34 35 36
static double       param_time_limit;
static int          param_threads;
static bool         param_write_sanity;
static bool         param_verify_sanity;
#ifdef HAVE_CUDA
static int          param_cuda_device;
#endif

wester committed
37

a  
Kai Westerkamp committed
38
#ifdef ANDROID
wester committed
39 40 41 42 43
static int          param_affinity_mask;
static bool         log_power_checkpoints;

#include <sys/syscall.h>
#include <pthread.h>
wester committed
44
#include <cerrno>
wester committed
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
static void setCurrentThreadAffinityMask(int mask)
{
    pid_t pid=gettid();
    int syscallres=syscall(__NR_sched_setaffinity, pid, sizeof(mask), &mask);
    if (syscallres)
    {
        int err=errno;
        err=err;//to avoid warnings about unused variables
        LOGE("Error in the syscall setaffinity: mask=%d=0x%x err=%d=0x%x", mask, mask, err, err);
    }
}
#endif

namespace {

class PerfEnvironment: public ::testing::Environment
{
public:
    void TearDown()
    {
        cv::setNumThreads(-1);
    }
};

} // namespace

static void randu(cv::Mat& m)
{
    const int bigValue = 0x00000FFF;
    if (m.depth() < CV_32F)
    {
        int minmax[] = {0, 256};
        cv::Mat mr = cv::Mat(m.rows, (int)(m.cols * m.elemSize()), CV_8U, m.ptr(), m.step[0]);
        cv::randu(mr, cv::Mat(1, 1, CV_32S, minmax), cv::Mat(1, 1, CV_32S, minmax + 1));
    }
    else if (m.depth() == CV_32F)
    {
        //float minmax[] = {-FLT_MAX, FLT_MAX};
        float minmax[] = {-bigValue, bigValue};
        cv::Mat mr = m.reshape(1);
        cv::randu(mr, cv::Mat(1, 1, CV_32F, minmax), cv::Mat(1, 1, CV_32F, minmax + 1));
    }
    else
    {
        //double minmax[] = {-DBL_MAX, DBL_MAX};
        double minmax[] = {-bigValue, bigValue};
        cv::Mat mr = m.reshape(1);
        cv::randu(mr, cv::Mat(1, 1, CV_64F, minmax), cv::Mat(1, 1, CV_64F, minmax + 1));
    }
}

/*****************************************************************************************\
*                       inner exception class for early termination
\*****************************************************************************************/

class PerfEarlyExitException: public cv::Exception {};

/*****************************************************************************************\
*                                   ::perf::Regression
\*****************************************************************************************/

Regression& Regression::instance()
{
    static Regression single;
    return single;
}

Regression& Regression::add(TestBase* test, const std::string& name, cv::InputArray array, double eps, ERROR_TYPE err)
{
    if(test) test->setVerified();
    return instance()(name, array, eps, err);
}

Regression& Regression::addKeypoints(TestBase* test, const std::string& name, const std::vector<cv::KeyPoint>& array, double eps, ERROR_TYPE err)
{
    int len = (int)array.size();
    cv::Mat pt      (len, 1, CV_32FC2, len ? (void*)&array[0].pt : 0,       sizeof(cv::KeyPoint));
    cv::Mat size    (len, 1, CV_32FC1, len ? (void*)&array[0].size : 0,     sizeof(cv::KeyPoint));
    cv::Mat angle   (len, 1, CV_32FC1, len ? (void*)&array[0].angle : 0,    sizeof(cv::KeyPoint));
    cv::Mat response(len, 1, CV_32FC1, len ? (void*)&array[0].response : 0, sizeof(cv::KeyPoint));
    cv::Mat octave  (len, 1, CV_32SC1, len ? (void*)&array[0].octave : 0,   sizeof(cv::KeyPoint));
    cv::Mat class_id(len, 1, CV_32SC1, len ? (void*)&array[0].class_id : 0, sizeof(cv::KeyPoint));

    return Regression::add(test, name + "-pt",       pt,       eps, ERROR_ABSOLUTE)
                                (name + "-size",     size,     eps, ERROR_ABSOLUTE)
                                (name + "-angle",    angle,    eps, ERROR_ABSOLUTE)
                                (name + "-response", response, eps, err)
                                (name + "-octave",   octave,   eps, ERROR_ABSOLUTE)
                                (name + "-class_id", class_id, eps, ERROR_ABSOLUTE);
}

Regression& Regression::addMatches(TestBase* test, const std::string& name, const std::vector<cv::DMatch>& array, double eps, ERROR_TYPE err)
{
    int len = (int)array.size();
    cv::Mat queryIdx(len, 1, CV_32SC1, len ? (void*)&array[0].queryIdx : 0, sizeof(cv::DMatch));
    cv::Mat trainIdx(len, 1, CV_32SC1, len ? (void*)&array[0].trainIdx : 0, sizeof(cv::DMatch));
    cv::Mat imgIdx  (len, 1, CV_32SC1, len ? (void*)&array[0].imgIdx : 0,   sizeof(cv::DMatch));
    cv::Mat distance(len, 1, CV_32FC1, len ? (void*)&array[0].distance : 0, sizeof(cv::DMatch));

    return Regression::add(test, name + "-queryIdx", queryIdx, DBL_EPSILON, ERROR_ABSOLUTE)
                                (name + "-trainIdx", trainIdx, DBL_EPSILON, ERROR_ABSOLUTE)
                                (name + "-imgIdx",   imgIdx,   DBL_EPSILON, ERROR_ABSOLUTE)
                                (name + "-distance", distance, eps, err);
}

void Regression::Init(const std::string& testSuitName, const std::string& ext)
{
    instance().init(testSuitName, ext);
}

void Regression::init(const std::string& testSuitName, const std::string& ext)
{
    if (!storageInPath.empty())
    {
        LOGE("Subsequent initialization of Regression utility is not allowed.");
        return;
    }

    const char *data_path_dir = getenv("OPENCV_TEST_DATA_PATH");
    const char *path_separator = "/";

    if (data_path_dir)
    {
        int len = (int)strlen(data_path_dir)-1;
        if (len < 0) len = 0;
        std::string path_base = (data_path_dir[0] == 0 ? std::string(".") : std::string(data_path_dir))
                + (data_path_dir[len] == '/' || data_path_dir[len] == '\\' ? "" : path_separator)
                + "perf"
                + path_separator;

        storageInPath = path_base + testSuitName + ext;
        storageOutPath = path_base + testSuitName;
    }
    else
    {
        storageInPath = testSuitName + ext;
        storageOutPath = testSuitName;
    }

    suiteName = testSuitName;

    try
    {
        if (storageIn.open(storageInPath, cv::FileStorage::READ))
        {
            rootIn = storageIn.root();
            if (storageInPath.length() > 3 && storageInPath.substr(storageInPath.length()-3) == ".gz")
                storageOutPath += "_new";
            storageOutPath += ext;
        }
    }
    catch(cv::Exception&)
    {
        LOGE("Failed to open sanity data for reading: %s", storageInPath.c_str());
    }

    if(!storageIn.isOpened())
        storageOutPath = storageInPath;
}

Regression::Regression() : regRNG(cv::getTickCount())//this rng should be really random
{
}

Regression::~Regression()
{
    if (storageIn.isOpened())
        storageIn.release();
    if (storageOut.isOpened())
    {
        if (!currentTestNodeName.empty())
            storageOut << "}";
        storageOut.release();
    }
}

cv::FileStorage& Regression::write()
{
    if (!storageOut.isOpened() && !storageOutPath.empty())
    {
        int mode = (storageIn.isOpened() && storageInPath == storageOutPath)
                ? cv::FileStorage::APPEND : cv::FileStorage::WRITE;
        storageOut.open(storageOutPath, mode);
        if (!storageOut.isOpened())
        {
            LOGE("Could not open \"%s\" file for writing", storageOutPath.c_str());
            storageOutPath.clear();
        }
        else if (mode == cv::FileStorage::WRITE && !rootIn.empty())
        {
            //TODO: write content of rootIn node into the storageOut
        }
    }
    return storageOut;
}

std::string Regression::getCurrentTestNodeName()
{
    const ::testing::TestInfo* const test_info =
      ::testing::UnitTest::GetInstance()->current_test_info();

    if (test_info == 0)
        return "undefined";

    std::string nodename = std::string(test_info->test_case_name()) + "--" + test_info->name();
    size_t idx = nodename.find_first_of('/');
    if (idx != std::string::npos)
        nodename.erase(idx);

    const char* type_param = test_info->type_param();
    if (type_param != 0)
        (nodename += "--") += type_param;

    const char* value_param = test_info->value_param();
    if (value_param != 0)
        (nodename += "--") += value_param;

    for(size_t i = 0; i < nodename.length(); ++i)
        if (!isalnum(nodename[i]) && '_' != nodename[i])
            nodename[i] = '-';

    return nodename;
}

bool Regression::isVector(cv::InputArray a)
{
wester committed
271
    return a.kind() == cv::_InputArray::STD_VECTOR_MAT || a.kind() == cv::_InputArray::STD_VECTOR_VECTOR;
wester committed
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
}

double Regression::getElem(cv::Mat& m, int y, int x, int cn)
{
    switch (m.depth())
    {
    case CV_8U: return *(m.ptr<unsigned char>(y, x) + cn);
    case CV_8S: return *(m.ptr<signed char>(y, x) + cn);
    case CV_16U: return *(m.ptr<unsigned short>(y, x) + cn);
    case CV_16S: return *(m.ptr<signed short>(y, x) + cn);
    case CV_32S: return *(m.ptr<signed int>(y, x) + cn);
    case CV_32F: return *(m.ptr<float>(y, x) + cn);
    case CV_64F: return *(m.ptr<double>(y, x) + cn);
    default: return 0;
    }
}

void Regression::write(cv::Mat m)
{
    if (!m.empty() && m.dims < 2) return;

    double min, max;
    cv::minMaxIdx(m, &min, &max);
    write() << "min" << min << "max" << max;

    write() << "last" << "{" << "x" << m.size.p[1] - 1 << "y" << m.size.p[0] - 1
        << "val" << getElem(m, m.size.p[0] - 1, m.size.p[1] - 1, m.channels() - 1) << "}";

    int x, y, cn;
    x = regRNG.uniform(0, m.size.p[1]);
    y = regRNG.uniform(0, m.size.p[0]);
    cn = regRNG.uniform(0, m.channels());
    write() << "rng1" << "{" << "x" << x << "y" << y;
    if(cn > 0) write() << "cn" << cn;
    write() << "val" << getElem(m, y, x, cn) << "}";

    x = regRNG.uniform(0, m.size.p[1]);
    y = regRNG.uniform(0, m.size.p[0]);
    cn = regRNG.uniform(0, m.channels());
    write() << "rng2" << "{" << "x" << x << "y" << y;
    if (cn > 0) write() << "cn" << cn;
    write() << "val" << getElem(m, y, x, cn) << "}";
}

void Regression::verify(cv::FileNode node, cv::Mat actual, double eps, std::string argname, ERROR_TYPE err)
{
    if (!actual.empty() && actual.dims < 2) return;

    double expect_min = (double)node["min"];
    double expect_max = (double)node["max"];

    if (err == ERROR_RELATIVE)
        eps *= std::max(std::abs(expect_min), std::abs(expect_max));

    double actual_min, actual_max;
    cv::minMaxIdx(actual, &actual_min, &actual_max);

    ASSERT_NEAR(expect_min, actual_min, eps)
            << argname << " has unexpected minimal value" << std::endl;
    ASSERT_NEAR(expect_max, actual_max, eps)
            << argname << " has unexpected maximal value" << std::endl;

    cv::FileNode last = node["last"];
    double actual_last = getElem(actual, actual.size.p[0] - 1, actual.size.p[1] - 1, actual.channels() - 1);
    int expect_cols = (int)last["x"] + 1;
    int expect_rows = (int)last["y"] + 1;
    ASSERT_EQ(expect_cols, actual.size.p[1])
            << argname << " has unexpected number of columns" << std::endl;
    ASSERT_EQ(expect_rows, actual.size.p[0])
            << argname << " has unexpected number of rows" << std::endl;

    double expect_last = (double)last["val"];
    ASSERT_NEAR(expect_last, actual_last, eps)
            << argname << " has unexpected value of the last element" << std::endl;

    cv::FileNode rng1 = node["rng1"];
    int x1 = rng1["x"];
    int y1 = rng1["y"];
    int cn1 = rng1["cn"];

    double expect_rng1 = (double)rng1["val"];
    // it is safe to use x1 and y1 without checks here because we have already
    // verified that mat size is the same as recorded
    double actual_rng1 = getElem(actual, y1, x1, cn1);

    ASSERT_NEAR(expect_rng1, actual_rng1, eps)
            << argname << " has unexpected value of the ["<< x1 << ":" << y1 << ":" << cn1 <<"] element" << std::endl;

    cv::FileNode rng2 = node["rng2"];
    int x2 = rng2["x"];
    int y2 = rng2["y"];
    int cn2 = rng2["cn"];

    double expect_rng2 = (double)rng2["val"];
    double actual_rng2 = getElem(actual, y2, x2, cn2);

    ASSERT_NEAR(expect_rng2, actual_rng2, eps)
            << argname << " has unexpected value of the ["<< x2 << ":" << y2 << ":" << cn2 <<"] element" << std::endl;
}

void Regression::write(cv::InputArray array)
{
    write() << "kind" << array.kind();
    write() << "type" << array.type();
    if (isVector(array))
    {
        int total = (int)array.total();
        int idx = regRNG.uniform(0, total);
        write() << "len" << total;
        write() << "idx" << idx;

        cv::Mat m = array.getMat(idx);

        if (m.total() * m.channels() < 26) //5x5 or smaller
            write() << "val" << m;
        else
            write(m);
    }
    else
    {
        if (array.total() * array.channels() < 26) //5x5 or smaller
            write() << "val" << array.getMat();
        else
            write(array.getMat());
    }
}

static int countViolations(const cv::Mat& expected, const cv::Mat& actual, const cv::Mat& diff, double eps, double* max_violation = 0, double* max_allowed = 0)
{
    cv::Mat diff64f;
    diff.reshape(1).convertTo(diff64f, CV_64F);

    cv::Mat expected_abs = cv::abs(expected.reshape(1));
    cv::Mat actual_abs = cv::abs(actual.reshape(1));
    cv::Mat maximum, mask;
    cv::max(expected_abs, actual_abs, maximum);
    cv::multiply(maximum, cv::Vec<double, 1>(eps), maximum, CV_64F);
    cv::compare(diff64f, maximum, mask, cv::CMP_GT);

    int v = cv::countNonZero(mask);

    if (v > 0 && max_violation != 0 && max_allowed != 0)
    {
wester committed
415
        int loc[10];
wester committed
416
        cv::minMaxIdx(maximum, 0, max_allowed, 0, loc, mask);
wester committed
417
        *max_violation = diff64f.at<double>(loc[1], loc[0]);
wester committed
418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643
    }

    return v;
}

void Regression::verify(cv::FileNode node, cv::InputArray array, double eps, ERROR_TYPE err)
{
    int expected_kind = (int)node["kind"];
    int expected_type = (int)node["type"];
    ASSERT_EQ(expected_kind, array.kind()) << "  Argument \"" << node.name() << "\" has unexpected kind";
    ASSERT_EQ(expected_type, array.type()) << "  Argument \"" << node.name() << "\" has unexpected type";

    cv::FileNode valnode = node["val"];
    if (isVector(array))
    {
        int expected_length = (int)node["len"];
        ASSERT_EQ(expected_length, (int)array.total()) << "  Vector \"" << node.name() << "\" has unexpected length";
        int idx = node["idx"];

        cv::Mat actual = array.getMat(idx);

        if (valnode.isNone())
        {
            ASSERT_LE((size_t)26, actual.total() * (size_t)actual.channels())
                    << "  \"" << node.name() << "[" <<  idx << "]\" has unexpected number of elements";
            verify(node, actual, eps, cv::format("%s[%d]", node.name().c_str(), idx), err);
        }
        else
        {
            cv::Mat expected;
            valnode >> expected;

            if(expected.empty())
            {
                ASSERT_TRUE(actual.empty())
                    << "  expected empty " << node.name() << "[" <<  idx<< "]";
            }
            else
            {
                ASSERT_EQ(expected.size(), actual.size())
                        << "  " << node.name() << "[" <<  idx<< "] has unexpected size";

                cv::Mat diff;
                cv::absdiff(expected, actual, diff);

                if (err == ERROR_ABSOLUTE)
                {
                    if (!cv::checkRange(diff, true, 0, 0, eps))
                    {
                        if(expected.total() * expected.channels() < 12)
                            std::cout << " Expected: " << std::endl << expected << std::endl << " Actual:" << std::endl << actual << std::endl;

                        double max;
                        cv::minMaxIdx(diff.reshape(1), 0, &max);

                        FAIL() << "  Absolute difference (=" << max << ") between argument \""
                               << node.name() << "[" <<  idx << "]\" and expected value is greater than " << eps;
                    }
                }
                else if (err == ERROR_RELATIVE)
                {
                    double maxv, maxa;
                    int violations = countViolations(expected, actual, diff, eps, &maxv, &maxa);
                    if (violations > 0)
                    {
                        if(expected.total() * expected.channels() < 12)
                            std::cout << " Expected: " << std::endl << expected << std::endl << " Actual:" << std::endl << actual << std::endl;

                        FAIL() << "  Relative difference (" << maxv << " of " << maxa << " allowed) between argument \""
                               << node.name() << "[" <<  idx << "]\" and expected value is greater than " << eps << " in " << violations << " points";
                    }
                }
            }
        }
    }
    else
    {
        if (valnode.isNone())
        {
            ASSERT_LE((size_t)26, array.total() * (size_t)array.channels())
                    << "  Argument \"" << node.name() << "\" has unexpected number of elements";
            verify(node, array.getMat(), eps, "Argument \"" + node.name() + "\"", err);
        }
        else
        {
            cv::Mat expected;
            valnode >> expected;
            cv::Mat actual = array.getMat();

            if(expected.empty())
            {
                ASSERT_TRUE(actual.empty())
                    << "  expected empty " << node.name();
            }
            else
            {
                ASSERT_EQ(expected.size(), actual.size())
                        << "  Argument \"" << node.name() << "\" has unexpected size";

                cv::Mat diff;
                cv::absdiff(expected, actual, diff);

                if (err == ERROR_ABSOLUTE)
                {
                    if (!cv::checkRange(diff, true, 0, 0, eps))
                    {
                        if(expected.total() * expected.channels() < 12)
                            std::cout << " Expected: " << std::endl << expected << std::endl << " Actual:" << std::endl << actual << std::endl;

                        double max;
                        cv::minMaxIdx(diff.reshape(1), 0, &max);

                        FAIL() << "  Difference (=" << max << ") between argument1 \"" << node.name()
                               << "\" and expected value is greater than " << eps;
                    }
                }
                else if (err == ERROR_RELATIVE)
                {
                    double maxv, maxa;
                    int violations = countViolations(expected, actual, diff, eps, &maxv, &maxa);
                    if (violations > 0)
                    {
                        if(expected.total() * expected.channels() < 12)
                            std::cout << " Expected: " << std::endl << expected << std::endl << " Actual:" << std::endl << actual << std::endl;

                        FAIL() << "  Relative difference (" << maxv << " of " << maxa << " allowed) between argument \"" << node.name()
                               << "\" and expected value is greater than " << eps << " in " << violations << " points";
                    }
                }
            }
        }
    }
}

Regression& Regression::operator() (const std::string& name, cv::InputArray array, double eps, ERROR_TYPE err)
{
    // exit if current test is already failed
    if(::testing::UnitTest::GetInstance()->current_test_info()->result()->Failed()) return *this;

    if(!array.empty() && array.depth() == CV_USRTYPE1)
    {
        ADD_FAILURE() << "  Can not check regression for CV_USRTYPE1 data type for " << name;
        return *this;
    }

    std::string nodename = getCurrentTestNodeName();

    cv::FileNode n = rootIn[nodename];
    if(n.isNone())
    {
        if(param_write_sanity)
        {
            if (nodename != currentTestNodeName)
            {
                if (!currentTestNodeName.empty())
                    write() << "}";
                currentTestNodeName = nodename;

                write() << nodename << "{";
            }
            // TODO: verify that name is alphanumeric, current error message is useless
            write() << name << "{";
            write(array);
            write() << "}";
        }
        else if(param_verify_sanity)
        {
            ADD_FAILURE() << "  No regression data for " << name << " argument";
        }
    }
    else
    {
        cv::FileNode this_arg = n[name];
        if (!this_arg.isMap())
            ADD_FAILURE() << "  No regression data for " << name << " argument";
        else
            verify(this_arg, array, eps, err);
    }

    return *this;
}


/*****************************************************************************************\
*                                ::perf::performance_metrics
\*****************************************************************************************/
performance_metrics::performance_metrics()
{
    clear();
}

void performance_metrics::clear()
{
    bytesIn = 0;
    bytesOut = 0;
    samples = 0;
    outliers = 0;
    gmean = 0;
    gstddev = 0;
    mean = 0;
    stddev = 0;
    median = 0;
    min = 0;
    frequency = 0;
    terminationReason = TERM_UNKNOWN;
}


/*****************************************************************************************\
*                                   ::perf::TestBase
\*****************************************************************************************/


void TestBase::Init(int argc, const char* const argv[])
{
    std::vector<std::string> plain_only;
    plain_only.push_back("plain");
    TestBase::Init(plain_only, argc, argv);
}

void TestBase::Init(const std::vector<std::string> & availableImpls,
                 int argc, const char* const argv[])
{
    available_impls = availableImpls;

    const std::string command_line_keys =
wester committed
644 645 646 647 648 649 650 651 652 653 654 655
        "{   |perf_max_outliers           |8        |percent of allowed outliers}"
        "{   |perf_min_samples            |10       |minimal required numer of samples}"
        "{   |perf_force_samples          |100      |force set maximum number of samples for all tests}"
        "{   |perf_seed                   |809564   |seed for random numbers generator}"
        "{   |perf_threads                |-1       |the number of worker threads, if parallel execution is enabled}"
        "{   |perf_write_sanity           |false    |create new records for sanity checks}"
        "{   |perf_verify_sanity          |false    |fail tests having no regression data for sanity checks}"
        "{   |perf_impl                   |" + available_impls[0] +
                                                   "|the implementation variant of functions under test}"
        "{   |perf_list_impls             |false    |list available implementation variants and exit}"
        "{   |perf_run_cpu                |false    |deprecated, equivalent to --perf_impl=plain}"
        "{   |perf_strategy               |default  |specifies performance measuring strategy: default, base or simple (weak restrictions)}"
a  
Kai Westerkamp committed
656
#ifdef ANDROID
wester committed
657 658 659
        "{   |perf_time_limit             |6.0      |default time limit for a single test (in seconds)}"
        "{   |perf_affinity_mask          |0        |set affinity mask for the main thread}"
        "{   |perf_log_power_checkpoints  |         |additional xml logging for power measurement}"
wester committed
660
#else
wester committed
661
        "{   |perf_time_limit             |3.0      |default time limit for a single test (in seconds)}"
wester committed
662
#endif
wester committed
663 664
        "{   |perf_max_deviation          |1.0      |}"
        "{h  |help                        |false    |print help info}"
wester committed
665
#ifdef HAVE_CUDA
wester committed
666 667
        "{   |perf_cuda_device            |0        |run GPU test suite onto specific CUDA capable device}"
        "{   |perf_cuda_info_only         |false    |print an information about system and an available CUDA devices and then exit.}"
wester committed
668 669 670
#endif
    ;

wester committed
671
    cv::CommandLineParser args(argc, argv, command_line_keys.c_str());
wester committed
672 673
    if (args.get<bool>("help"))
    {
wester committed
674 675
        args.printParams();
        printf("\n\n");
wester committed
676 677 678 679 680 681 682 683 684 685 686 687 688
        return;
    }

    ::testing::AddGlobalTestEnvironment(new PerfEnvironment);

    param_impl          = args.get<bool>("perf_run_cpu") ? "plain" : args.get<std::string>("perf_impl");
    std::string perf_strategy = args.get<std::string>("perf_strategy");
    if (perf_strategy == "default")
    {
        // nothing
    }
    else if (perf_strategy == "base")
    {
wester committed
689
        param_strategy = PERF_STRATEGY_BASE;
wester committed
690 691 692
    }
    else if (perf_strategy == "simple")
    {
wester committed
693
        param_strategy = PERF_STRATEGY_SIMPLE;
wester committed
694 695 696 697 698 699 700 701 702
    }
    else
    {
        printf("No such strategy: %s\n", perf_strategy.c_str());
        exit(1);
    }
    param_max_outliers  = std::min(100., std::max(0., args.get<double>("perf_max_outliers")));
    param_min_samples   = std::max(1u, args.get<unsigned int>("perf_min_samples"));
    param_max_deviation = std::max(0., args.get<double>("perf_max_deviation"));
wester committed
703
    param_seed          = args.get<uint64>("perf_seed");
wester committed
704 705 706 707
    param_time_limit    = std::max(0., args.get<double>("perf_time_limit"));
    param_force_samples = args.get<unsigned int>("perf_force_samples");
    param_write_sanity  = args.get<bool>("perf_write_sanity");
    param_verify_sanity = args.get<bool>("perf_verify_sanity");
wester committed
708
    param_threads  = args.get<int>("perf_threads");
a  
Kai Westerkamp committed
709
#ifdef ANDROID
wester committed
710
    param_affinity_mask   = args.get<int>("perf_affinity_mask");
wester committed
711
    log_power_checkpoints = args.get<bool>("perf_log_power_checkpoints");
wester committed
712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745
#endif

    bool param_list_impls = args.get<bool>("perf_list_impls");

    if (param_list_impls)
    {
        fputs("Available implementation variants:", stdout);
        for (size_t i = 0; i < available_impls.size(); ++i) {
            putchar(' ');
            fputs(available_impls[i].c_str(), stdout);
        }
        putchar('\n');
        exit(0);
    }

    if (std::find(available_impls.begin(), available_impls.end(), param_impl) == available_impls.end())
    {
        printf("No such implementation: %s\n", param_impl.c_str());
        exit(1);
    }

#ifdef HAVE_CUDA

    bool printOnly        = args.get<bool>("perf_cuda_info_only");

    if (printOnly)
        exit(0);
#endif

    if (available_impls.size() > 1)
        printf("[----------]\n[   INFO   ] \tImplementation variant: %s.\n[----------]\n", param_impl.c_str()), fflush(stdout);

#ifdef HAVE_CUDA

wester committed
746
    param_cuda_device      = std::max(0, std::min(cv::gpu::getCudaEnabledDeviceCount(), args.get<int>("perf_cuda_device")));
wester committed
747 748 749

    if (param_impl == "cuda")
    {
wester committed
750
        cv::gpu::DeviceInfo info(param_cuda_device);
wester committed
751 752
        if (!info.isCompatible())
        {
wester committed
753
            printf("[----------]\n[ FAILURE  ] \tDevice %s is NOT compatible with current GPU module build.\n[----------]\n", info.name().c_str()), fflush(stdout);
wester committed
754 755 756
            exit(-1);
        }

wester committed
757
        cv::gpu::setDevice(param_cuda_device);
wester committed
758

wester committed
759
        printf("[----------]\n[ GPU INFO ] \tRun test suite on %s GPU.\n[----------]\n", info.name().c_str()), fflush(stdout);
wester committed
760 761 762
    }
#endif

wester committed
763 764 765 766 767
//    if (!args.check())
//    {
//        args.printErrors();
//        return;
//    }
wester committed
768 769 770 771 772 773 774 775 776 777 778 779 780 781

    timeLimitDefault = param_time_limit == 0.0 ? 1 : (int64)(param_time_limit * cv::getTickFrequency());
    iterationsLimitDefault = param_force_samples == 0 ? (unsigned)(-1) : param_force_samples;
    _timeadjustment = _calibrate();
}

void TestBase::RecordRunParameters()
{
    ::testing::Test::RecordProperty("cv_implementation", param_impl);
    ::testing::Test::RecordProperty("cv_num_threads", param_threads);

#ifdef HAVE_CUDA
    if (param_impl == "cuda")
    {
wester committed
782
        cv::gpu::DeviceInfo info(param_cuda_device);
wester committed
783 784 785 786 787 788 789 790 791 792
        ::testing::Test::RecordProperty("cv_cuda_gpu", info.name());
    }
#endif
}

std::string TestBase::getSelectedImpl()
{
    return param_impl;
}

wester committed
793
enum PERF_STRATEGY TestBase::getPerformanceStrategy()
wester committed
794
{
wester committed
795
    return param_strategy;
wester committed
796 797
}

wester committed
798
enum PERF_STRATEGY TestBase::setPerformanceStrategy(enum PERF_STRATEGY strategy)
wester committed
799
{
wester committed
800 801 802
    enum PERF_STRATEGY ret = param_strategy;
    param_strategy = strategy;
    return ret;
wester committed
803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820
}


int64 TestBase::_calibrate()
{
    class _helper : public ::perf::TestBase
    {
        public:
        performance_metrics& getMetrics() { return calcMetrics(); }
        virtual void TestBody() {}
        virtual void PerfTestBody()
        {
            //the whole system warmup
            SetUp();
            cv::Mat a(2048, 2048, CV_32S, cv::Scalar(1));
            cv::Mat b(2048, 2048, CV_32S, cv::Scalar(2));
            declare.time(30);
            double s = 0;
a  
Kai Westerkamp committed
821
            for(declare.iterations(20); startTimer(), next(); stopTimer())
wester committed
822 823 824 825 826
                s+=a.dot(b);
            declare.time(s);

            //self calibration
            SetUp();
a  
Kai Westerkamp committed
827
            for(declare.iterations(1000); startTimer(), next(); stopTimer()){}
wester committed
828 829 830 831 832 833 834
        }
    };

    _timeadjustment = 0;
    _helper h;
    h.PerfTestBody();
    double compensation = h.getMetrics().min;
wester committed
835
    if (param_strategy == PERF_STRATEGY_SIMPLE)
wester committed
836 837 838 839 840 841 842 843 844 845 846 847
    {
        CV_Assert(compensation < 0.01 * cv::getTickFrequency());
        compensation = 0.0f; // simple strategy doesn't require any compensation
    }
    LOGD("Time compensation is %.0f", compensation);
    return (int64)compensation;
}

#ifdef _MSC_VER
# pragma warning(push)
# pragma warning(disable:4355)  // 'this' : used in base member initializer list
#endif
wester committed
848
TestBase::TestBase(): declare(this)
wester committed
849 850 851 852 853 854 855
{
}
#ifdef _MSC_VER
# pragma warning(pop)
#endif


wester committed
856
void TestBase::declareArray(SizeVector& sizes, cv::InputOutputArray a, int wtype)
wester committed
857 858 859 860 861 862 863 864 865 866
{
    if (!a.empty())
    {
        sizes.push_back(std::pair<int, cv::Size>(getSizeInBytes(a), getSize(a)));
        warmup(a, wtype);
    }
    else if (a.kind() != cv::_InputArray::NONE)
        ADD_FAILURE() << "  Uninitialized input/output parameters are not allowed for performance tests";
}

wester committed
867
void TestBase::warmup(cv::InputOutputArray a, int wtype)
wester committed
868
{
wester committed
869 870
    if (a.empty()) return;
    if (a.kind() != cv::_InputArray::STD_VECTOR_MAT && a.kind() != cv::_InputArray::STD_VECTOR_VECTOR)
wester committed
871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928
        warmup_impl(a.getMat(), wtype);
    else
    {
        size_t total = a.total();
        for (size_t i = 0; i < total; ++i)
            warmup_impl(a.getMat((int)i), wtype);
    }
}

int TestBase::getSizeInBytes(cv::InputArray a)
{
    if (a.empty()) return 0;
    int total = (int)a.total();
    if (a.kind() != cv::_InputArray::STD_VECTOR_MAT && a.kind() != cv::_InputArray::STD_VECTOR_VECTOR)
        return total * CV_ELEM_SIZE(a.type());

    int size = 0;
    for (int i = 0; i < total; ++i)
        size += (int)a.total(i) * CV_ELEM_SIZE(a.type(i));

    return size;
}

cv::Size TestBase::getSize(cv::InputArray a)
{
    if (a.kind() != cv::_InputArray::STD_VECTOR_MAT && a.kind() != cv::_InputArray::STD_VECTOR_VECTOR)
        return a.size();
    return cv::Size();
}

bool TestBase::next()
{
    static int64 lastActivityPrintTime = 0;

    if (currentIter != (unsigned int)-1)
    {
        if (currentIter + 1 != times.size())
            ADD_FAILURE() << "  next() is called before stopTimer()";
    }
    else
    {
        lastActivityPrintTime = 0;
        metrics.clear();
    }

    cv::theRNG().state = param_seed; //this rng should generate same numbers for each run
    ++currentIter;

    bool has_next = false;

    do {
        assert(currentIter == times.size());
        if (currentIter == 0)
        {
            has_next = true;
            break;
        }

wester committed
929
        if (param_strategy == PERF_STRATEGY_BASE)
wester committed
930 931 932 933 934
        {
            has_next = currentIter < nIters && totalTime < timeLimit;
        }
        else
        {
wester committed
935
            assert(param_strategy == PERF_STRATEGY_SIMPLE);
wester committed
936 937 938 939 940 941 942 943 944 945
            if (totalTime - lastActivityPrintTime >= cv::getTickFrequency() * 10)
            {
                std::cout << '.' << std::endl;
                lastActivityPrintTime = totalTime;
            }
            if (currentIter >= nIters)
            {
                has_next = false;
                break;
            }
wester committed
946
            if (currentIter < param_min_samples)
wester committed
947 948 949 950 951 952 953
            {
                has_next = true;
                break;
            }

            calcMetrics();

wester committed
954
            double criteria = 0.03;  // 3%
wester committed
955
            if (fabs(metrics.mean) > 1e-6)
wester committed
956
                has_next = metrics.stddev > criteria * fabs(metrics.mean);
wester committed
957 958 959 960 961
            else
                has_next = true;
        }
    } while (false);

a  
Kai Westerkamp committed
962
#ifdef ANDROID
wester committed
963 964 965 966 967 968 969 970 971 972 973
    if (log_power_checkpoints)
    {
        timeval tim;
        gettimeofday(&tim, NULL);
        unsigned long long t1 = tim.tv_sec * 1000LLU + (unsigned long long)(tim.tv_usec / 1000.f);

        if (currentIter == 1) RecordProperty("test_start", cv::format("%llu",t1).c_str());
        if (!has_next) RecordProperty("test_complete", cv::format("%llu",t1).c_str());
    }
#endif

a  
Kai Westerkamp committed
974 975
    if (has_next)
        startTimer(); // really we should measure activity from this moment, so reset start time
wester committed
976 977 978
    return has_next;
}

wester committed
979
void TestBase::warmup_impl(cv::Mat m, int wtype)
wester committed
980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
{
    switch(wtype)
    {
    case WARMUP_READ:
        cv::sum(m.reshape(1));
        return;
    case WARMUP_WRITE:
        m.reshape(1).setTo(cv::Scalar::all(0));
        return;
    case WARMUP_RNG:
        randu(m);
        return;
    default:
        return;
    }
}

unsigned int TestBase::getTotalInputSize() const
{
    unsigned int res = 0;
    for (SizeVector::const_iterator i = inputData.begin(); i != inputData.end(); ++i)
        res += i->first;
    return res;
}

unsigned int TestBase::getTotalOutputSize() const
{
    unsigned int res = 0;
    for (SizeVector::const_iterator i = outputData.begin(); i != outputData.end(); ++i)
        res += i->first;
    return res;
}

a  
Kai Westerkamp committed
1013
void TestBase::startTimer()
wester committed
1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
{
    lastTime = cv::getTickCount();
}

void TestBase::stopTimer()
{
    int64 time = cv::getTickCount();
    if (lastTime == 0)
        ADD_FAILURE() << "  stopTimer() is called before startTimer()/next()";
    lastTime = time - lastTime;
    totalTime += lastTime;
    lastTime -= _timeadjustment;
    if (lastTime < 0) lastTime = 0;
    times.push_back(lastTime);
    lastTime = 0;
}

performance_metrics& TestBase::calcMetrics()
{
    CV_Assert(metrics.samples <= (unsigned int)currentIter);
    if ((metrics.samples == (unsigned int)currentIter) || times.size() == 0)
        return metrics;

    metrics.bytesIn = getTotalInputSize();
    metrics.bytesOut = getTotalOutputSize();
    metrics.frequency = cv::getTickFrequency();
    metrics.samples = (unsigned int)times.size();
    metrics.outliers = 0;

    if (metrics.terminationReason != performance_metrics::TERM_INTERRUPT && metrics.terminationReason != performance_metrics::TERM_EXCEPTION)
    {
        if (currentIter == nIters)
            metrics.terminationReason = performance_metrics::TERM_ITERATIONS;
        else if (totalTime >= timeLimit)
            metrics.terminationReason = performance_metrics::TERM_TIME;
        else
            metrics.terminationReason = performance_metrics::TERM_UNKNOWN;
    }

    std::sort(times.begin(), times.end());

    TimeVector::const_iterator start = times.begin();
    TimeVector::const_iterator end = times.end();

wester committed
1058
    if (param_strategy == PERF_STRATEGY_BASE)
wester committed
1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
    {
        //estimate mean and stddev for log(time)
        double gmean = 0;
        double gstddev = 0;
        int n = 0;
        for(TimeVector::const_iterator i = times.begin(); i != times.end(); ++i)
        {
            double x = static_cast<double>(*i)/runsPerIteration;
            if (x < DBL_EPSILON) continue;
            double lx = log(x);

            ++n;
            double delta = lx - gmean;
            gmean += delta / n;
            gstddev += delta * (lx - gmean);
        }

        gstddev = n > 1 ? sqrt(gstddev / (n - 1)) : 0;

        //filter outliers assuming log-normal distribution
        //http://stackoverflow.com/questions/1867426/modeling-distribution-of-performance-measurements
        if (gstddev > DBL_EPSILON)
        {
            double minout = exp(gmean - 3 * gstddev) * runsPerIteration;
            double maxout = exp(gmean + 3 * gstddev) * runsPerIteration;
            while(*start < minout) ++start, ++metrics.outliers;
            do --end, ++metrics.outliers; while(*end > maxout);
            ++end, --metrics.outliers;
        }
    }
wester committed
1089
    else if (param_strategy == PERF_STRATEGY_SIMPLE)
wester committed
1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147
    {
        metrics.outliers = static_cast<int>(times.size() * param_max_outliers / 100);
        for (unsigned int i = 0; i < metrics.outliers; i++)
            --end;
    }
    else
    {
        assert(false);
    }

    int offset = static_cast<int>(start - times.begin());

    metrics.min = static_cast<double>(*start)/runsPerIteration;
    //calc final metrics
    unsigned int n = 0;
    double gmean = 0;
    double gstddev = 0;
    double mean = 0;
    double stddev = 0;
    unsigned int m = 0;
    for(; start != end; ++start)
    {
        double x = static_cast<double>(*start)/runsPerIteration;
        if (x > DBL_EPSILON)
        {
            double lx = log(x);
            ++m;
            double gdelta = lx - gmean;
            gmean += gdelta / m;
            gstddev += gdelta * (lx - gmean);
        }
        ++n;
        double delta = x - mean;
        mean += delta / n;
        stddev += delta * (x - mean);
    }

    metrics.mean = mean;
    metrics.gmean = exp(gmean);
    metrics.gstddev = m > 1 ? sqrt(gstddev / (m - 1)) : 0;
    metrics.stddev = n > 1 ? sqrt(stddev / (n - 1)) : 0;
    metrics.median = (n % 2
            ? (double)times[offset + n / 2]
            : 0.5 * (times[offset + n / 2] + times[offset + n / 2 - 1])
            ) / runsPerIteration;

    return metrics;
}

void TestBase::validateMetrics()
{
    performance_metrics& m = calcMetrics();

    if (HasFailure()) return;

    ASSERT_GE(m.samples, 1u)
      << "  No time measurements was performed.\nstartTimer() and stopTimer() commands are required for performance tests.";

wester committed
1148
    if (param_strategy == PERF_STRATEGY_BASE)
wester committed
1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
    {
        EXPECT_GE(m.samples, param_min_samples)
          << "  Only a few samples are collected.\nPlease increase number of iterations or/and time limit to get reliable performance measurements.";

        if (m.gstddev > DBL_EPSILON)
        {
            EXPECT_GT(/*m.gmean * */1., /*m.gmean * */ 2 * sinh(m.gstddev * param_max_deviation))
              << "  Test results are not reliable ((mean-sigma,mean+sigma) deviation interval is greater than measured time interval).";
        }

        EXPECT_LE(m.outliers, std::max((unsigned int)cvCeil(m.samples * param_max_outliers / 100.), 1u))
          << "  Test results are not reliable (too many outliers).";
    }
wester committed
1162
    else if (param_strategy == PERF_STRATEGY_SIMPLE)
wester committed
1163 1164 1165 1166
    {
        double mean = metrics.mean * 1000.0f / metrics.frequency;
        double stddev = metrics.stddev * 1000.0f / metrics.frequency;
        double percents = stddev / mean * 100.f;
wester committed
1167
        printf("    samples = %d, mean = %.2f, stddev = %.2f (%.1f%%)\n", (int)metrics.samples, mean, stddev, percents);
wester committed
1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
    }
    else
    {
        assert(false);
    }
}

void TestBase::reportMetrics(bool toJUnitXML)
{
    performance_metrics& m = calcMetrics();

    if (m.terminationReason == performance_metrics::TERM_SKIP_TEST)
    {
        if (toJUnitXML)
        {
            RecordProperty("custom_status", "skipped");
        }
    }
    else if (toJUnitXML)
    {
        RecordProperty("bytesIn", (int)m.bytesIn);
        RecordProperty("bytesOut", (int)m.bytesOut);
        RecordProperty("term", m.terminationReason);
        RecordProperty("samples", (int)m.samples);
        RecordProperty("outliers", (int)m.outliers);
        RecordProperty("frequency", cv::format("%.0f", m.frequency).c_str());
        RecordProperty("min", cv::format("%.0f", m.min).c_str());
        RecordProperty("median", cv::format("%.0f", m.median).c_str());
        RecordProperty("gmean", cv::format("%.0f", m.gmean).c_str());
        RecordProperty("gstddev", cv::format("%.6f", m.gstddev).c_str());
        RecordProperty("mean", cv::format("%.0f", m.mean).c_str());
        RecordProperty("stddev", cv::format("%.0f", m.stddev).c_str());
    }
    else
    {
        const ::testing::TestInfo* const test_info = ::testing::UnitTest::GetInstance()->current_test_info();
        const char* type_param = test_info->type_param();
        const char* value_param = test_info->value_param();

a  
Kai Westerkamp committed
1207
#if defined(ANDROID) && defined(USE_ANDROID_LOGGING)
wester committed
1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260
        LOGD("[ FAILED   ] %s.%s", test_info->test_case_name(), test_info->name());
#endif

        if (type_param)  LOGD("type      = %11s", type_param);
        if (value_param) LOGD("params    = %11s", value_param);

        switch (m.terminationReason)
        {
        case performance_metrics::TERM_ITERATIONS:
            LOGD("termination reason:  reached maximum number of iterations");
            break;
        case performance_metrics::TERM_TIME:
            LOGD("termination reason:  reached time limit");
            break;
        case performance_metrics::TERM_INTERRUPT:
            LOGD("termination reason:  aborted by the performance testing framework");
            break;
        case performance_metrics::TERM_EXCEPTION:
            LOGD("termination reason:  unhandled exception");
            break;
        case performance_metrics::TERM_UNKNOWN:
        default:
            LOGD("termination reason:  unknown");
            break;
        };

        LOGD("bytesIn   =%11lu", (unsigned long)m.bytesIn);
        LOGD("bytesOut  =%11lu", (unsigned long)m.bytesOut);
        if (nIters == (unsigned int)-1 || m.terminationReason == performance_metrics::TERM_ITERATIONS)
            LOGD("samples   =%11u",  m.samples);
        else
            LOGD("samples   =%11u of %u", m.samples, nIters);
        LOGD("outliers  =%11u", m.outliers);
        LOGD("frequency =%11.0f", m.frequency);
        if (m.samples > 0)
        {
            LOGD("min       =%11.0f = %.2fms", m.min, m.min * 1e3 / m.frequency);
            LOGD("median    =%11.0f = %.2fms", m.median, m.median * 1e3 / m.frequency);
            LOGD("gmean     =%11.0f = %.2fms", m.gmean, m.gmean * 1e3 / m.frequency);
            LOGD("gstddev   =%11.8f = %.2fms for 97%% dispersion interval", m.gstddev, m.gmean * 2 * sinh(m.gstddev * 3) * 1e3 / m.frequency);
            LOGD("mean      =%11.0f = %.2fms", m.mean, m.mean * 1e3 / m.frequency);
            LOGD("stddev    =%11.0f = %.2fms", m.stddev, m.stddev * 1e3 / m.frequency);
        }
    }
}

void TestBase::SetUp()
{
    cv::theRNG().state = param_seed; // this rng should generate same numbers for each run

    if (param_threads >= 0)
        cv::setNumThreads(param_threads);

a  
Kai Westerkamp committed
1261
#ifdef ANDROID
wester committed
1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364
    if (param_affinity_mask)
        setCurrentThreadAffinityMask(param_affinity_mask);
#endif

    verified = false;
    lastTime = 0;
    totalTime = 0;
    runsPerIteration = 1;
    nIters = iterationsLimitDefault;
    currentIter = (unsigned int)-1;
    timeLimit = timeLimitDefault;
    times.clear();
}

void TestBase::TearDown()
{
    if (metrics.terminationReason == performance_metrics::TERM_SKIP_TEST)
    {
        LOGI("\tTest was skipped");
        GTEST_SUCCEED() << "Test was skipped";
    }
    else
    {
        if (!HasFailure() && !verified)
            ADD_FAILURE() << "The test has no sanity checks. There should be at least one check at the end of performance test.";

        validateMetrics();
        if (HasFailure())
        {
            reportMetrics(false);
            return;
        }
    }

    const ::testing::TestInfo* const test_info = ::testing::UnitTest::GetInstance()->current_test_info();
    const char* type_param = test_info->type_param();
    const char* value_param = test_info->value_param();
    if (value_param) printf("[ VALUE    ] \t%s\n", value_param), fflush(stdout);
    if (type_param)  printf("[ TYPE     ] \t%s\n", type_param), fflush(stdout);
    reportMetrics(true);
}

std::string TestBase::getDataPath(const std::string& relativePath)
{
    if (relativePath.empty())
    {
        ADD_FAILURE() << "  Bad path to test resource";
        throw PerfEarlyExitException();
    }

    const char *data_path_dir = getenv("OPENCV_TEST_DATA_PATH");
    const char *path_separator = "/";

    std::string path;
    if (data_path_dir)
    {
        int len = (int)strlen(data_path_dir) - 1;
        if (len < 0) len = 0;
        path = (data_path_dir[0] == 0 ? std::string(".") : std::string(data_path_dir))
                + (data_path_dir[len] == '/' || data_path_dir[len] == '\\' ? "" : path_separator);
    }
    else
    {
        path = ".";
        path += path_separator;
    }

    if (relativePath[0] == '/' || relativePath[0] == '\\')
        path += relativePath.substr(1);
    else
        path += relativePath;

    FILE* fp = fopen(path.c_str(), "r");
    if (fp)
        fclose(fp);
    else
    {
        ADD_FAILURE() << "  Requested file \"" << path << "\" does not exist.";
        throw PerfEarlyExitException();
    }
    return path;
}

void TestBase::RunPerfTestBody()
{
    try
    {
        this->PerfTestBody();
    }
    catch(PerfSkipTestException&)
    {
        metrics.terminationReason = performance_metrics::TERM_SKIP_TEST;
        return;
    }
    catch(PerfEarlyExitException&)
    {
        metrics.terminationReason = performance_metrics::TERM_INTERRUPT;
        return;//no additional failure logging
    }
    catch(cv::Exception& e)
    {
        metrics.terminationReason = performance_metrics::TERM_EXCEPTION;
        #ifdef HAVE_CUDA
wester committed
1365 1366
            if (e.code == CV_GpuApiCallError)
                cv::gpu::resetDevice();
wester committed
1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415
        #endif
        FAIL() << "Expected: PerfTestBody() doesn't throw an exception.\n  Actual: it throws cv::Exception:\n  " << e.what();
    }
    catch(std::exception& e)
    {
        metrics.terminationReason = performance_metrics::TERM_EXCEPTION;
        FAIL() << "Expected: PerfTestBody() doesn't throw an exception.\n  Actual: it throws std::exception:\n  " << e.what();
    }
    catch(...)
    {
        metrics.terminationReason = performance_metrics::TERM_EXCEPTION;
        FAIL() << "Expected: PerfTestBody() doesn't throw an exception.\n  Actual: it throws...";
    }
}

/*****************************************************************************************\
*                          ::perf::TestBase::_declareHelper
\*****************************************************************************************/
TestBase::_declareHelper& TestBase::_declareHelper::iterations(unsigned int n)
{
    test->times.clear();
    test->times.reserve(n);
    test->nIters = std::min(n, TestBase::iterationsLimitDefault);
    test->currentIter = (unsigned int)-1;
    test->metrics.clear();
    return *this;
}

TestBase::_declareHelper& TestBase::_declareHelper::time(double timeLimitSecs)
{
    test->times.clear();
    test->currentIter = (unsigned int)-1;
    test->timeLimit = (int64)(timeLimitSecs * cv::getTickFrequency());
    test->metrics.clear();
    return *this;
}

TestBase::_declareHelper& TestBase::_declareHelper::tbb_threads(int n)
{
    cv::setNumThreads(n);
    return *this;
}

TestBase::_declareHelper& TestBase::_declareHelper::runs(unsigned int runsNumber)
{
    test->runsPerIteration = runsNumber;
    return *this;
}

wester committed
1416
TestBase::_declareHelper& TestBase::_declareHelper::in(cv::InputOutputArray a1, int wtype)
wester committed
1417 1418 1419 1420 1421 1422
{
    if (!test->times.empty()) return *this;
    TestBase::declareArray(test->inputData, a1, wtype);
    return *this;
}

wester committed
1423
TestBase::_declareHelper& TestBase::_declareHelper::in(cv::InputOutputArray a1, cv::InputOutputArray a2, int wtype)
wester committed
1424 1425 1426 1427 1428 1429 1430
{
    if (!test->times.empty()) return *this;
    TestBase::declareArray(test->inputData, a1, wtype);
    TestBase::declareArray(test->inputData, a2, wtype);
    return *this;
}

wester committed
1431
TestBase::_declareHelper& TestBase::_declareHelper::in(cv::InputOutputArray a1, cv::InputOutputArray a2, cv::InputOutputArray a3, int wtype)
wester committed
1432 1433 1434 1435 1436 1437 1438 1439
{
    if (!test->times.empty()) return *this;
    TestBase::declareArray(test->inputData, a1, wtype);
    TestBase::declareArray(test->inputData, a2, wtype);
    TestBase::declareArray(test->inputData, a3, wtype);
    return *this;
}

wester committed
1440
TestBase::_declareHelper& TestBase::_declareHelper::in(cv::InputOutputArray a1, cv::InputOutputArray a2, cv::InputOutputArray a3, cv::InputOutputArray a4, int wtype)
wester committed
1441 1442 1443 1444 1445 1446 1447 1448 1449
{
    if (!test->times.empty()) return *this;
    TestBase::declareArray(test->inputData, a1, wtype);
    TestBase::declareArray(test->inputData, a2, wtype);
    TestBase::declareArray(test->inputData, a3, wtype);
    TestBase::declareArray(test->inputData, a4, wtype);
    return *this;
}

wester committed
1450
TestBase::_declareHelper& TestBase::_declareHelper::out(cv::InputOutputArray a1, int wtype)
wester committed
1451 1452 1453 1454 1455 1456
{
    if (!test->times.empty()) return *this;
    TestBase::declareArray(test->outputData, a1, wtype);
    return *this;
}

wester committed
1457
TestBase::_declareHelper& TestBase::_declareHelper::out(cv::InputOutputArray a1, cv::InputOutputArray a2, int wtype)
wester committed
1458 1459 1460 1461 1462 1463 1464
{
    if (!test->times.empty()) return *this;
    TestBase::declareArray(test->outputData, a1, wtype);
    TestBase::declareArray(test->outputData, a2, wtype);
    return *this;
}

wester committed
1465
TestBase::_declareHelper& TestBase::_declareHelper::out(cv::InputOutputArray a1, cv::InputOutputArray a2, cv::InputOutputArray a3, int wtype)
wester committed
1466 1467 1468 1469 1470 1471 1472 1473
{
    if (!test->times.empty()) return *this;
    TestBase::declareArray(test->outputData, a1, wtype);
    TestBase::declareArray(test->outputData, a2, wtype);
    TestBase::declareArray(test->outputData, a3, wtype);
    return *this;
}

wester committed
1474
TestBase::_declareHelper& TestBase::_declareHelper::out(cv::InputOutputArray a1, cv::InputOutputArray a2, cv::InputOutputArray a3, cv::InputOutputArray a4, int wtype)
wester committed
1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578
{
    if (!test->times.empty()) return *this;
    TestBase::declareArray(test->outputData, a1, wtype);
    TestBase::declareArray(test->outputData, a2, wtype);
    TestBase::declareArray(test->outputData, a3, wtype);
    TestBase::declareArray(test->outputData, a4, wtype);
    return *this;
}

TestBase::_declareHelper::_declareHelper(TestBase* t) : test(t)
{
}

/*****************************************************************************************\
*                                  miscellaneous
\*****************************************************************************************/

namespace {
struct KeypointComparator
{
    std::vector<cv::KeyPoint>& pts_;
    comparators::KeypointGreater cmp;

    KeypointComparator(std::vector<cv::KeyPoint>& pts) : pts_(pts), cmp() {}

    bool operator()(int idx1, int idx2) const
    {
        return cmp(pts_[idx1], pts_[idx2]);
    }
private:
    const KeypointComparator& operator=(const KeypointComparator&); // quiet MSVC
};
}//namespace

void perf::sort(std::vector<cv::KeyPoint>& pts, cv::InputOutputArray descriptors)
{
    cv::Mat desc = descriptors.getMat();

    CV_Assert(pts.size() == (size_t)desc.rows);
    cv::AutoBuffer<int> idxs(desc.rows);

    for (int i = 0; i < desc.rows; ++i)
        idxs[i] = i;

    std::sort((int*)idxs, (int*)idxs + desc.rows, KeypointComparator(pts));

    std::vector<cv::KeyPoint> spts(pts.size());
    cv::Mat sdesc(desc.size(), desc.type());

    for(int j = 0; j < desc.rows; ++j)
    {
        spts[j] = pts[idxs[j]];
        cv::Mat row = sdesc.row(j);
        desc.row(idxs[j]).copyTo(row);
    }

    spts.swap(pts);
    sdesc.copyTo(desc);
}

/*****************************************************************************************\
*                                  ::perf::GpuPerf
\*****************************************************************************************/
bool perf::GpuPerf::targetDevice()
{
    return param_impl == "cuda";
}

/*****************************************************************************************\
*                                  ::perf::PrintTo
\*****************************************************************************************/
namespace perf
{

void PrintTo(const MatType& t, ::std::ostream* os)
{
    switch( CV_MAT_DEPTH((int)t) )
    {
        case CV_8U:  *os << "8U";  break;
        case CV_8S:  *os << "8S";  break;
        case CV_16U: *os << "16U"; break;
        case CV_16S: *os << "16S"; break;
        case CV_32S: *os << "32S"; break;
        case CV_32F: *os << "32F"; break;
        case CV_64F: *os << "64F"; break;
        case CV_USRTYPE1: *os << "USRTYPE1"; break;
        default: *os << "INVALID_TYPE"; break;
    }
    *os << 'C' << CV_MAT_CN((int)t);
}

} //namespace perf

/*****************************************************************************************\
*                                  ::cv::PrintTo
\*****************************************************************************************/
namespace cv {

void PrintTo(const Size& sz, ::std::ostream* os)
{
    *os << /*"Size:" << */sz.width << "x" << sz.height;
}

}  // namespace cv