orb.cu 15.3 KB
Newer Older
wester committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#if !defined CUDA_DISABLER

#include <thrust/device_ptr.h>
#include <thrust/sort.h>

wester committed
48 49 50
#include "opencv2/gpu/device/common.hpp"
#include "opencv2/gpu/device/reduce.hpp"
#include "opencv2/gpu/device/functional.hpp"
a  
Kai Westerkamp committed
51

wester committed
52
namespace cv { namespace gpu { namespace device
wester committed
53 54 55 56 57 58
{
    namespace orb
    {
        ////////////////////////////////////////////////////////////////////////////////////////////////////////
        // cull

a  
Kai Westerkamp committed
59
        int cull_gpu(int* loc, float* response, int size, int n_points)
wester committed
60 61 62
        {
            thrust::device_ptr<int> loc_ptr(loc);
            thrust::device_ptr<float> response_ptr(response);
a  
Kai Westerkamp committed
63

wester committed
64
            thrust::sort_by_key(response_ptr, response_ptr + size, loc_ptr, thrust::greater<float>());
a  
Kai Westerkamp committed
65

wester committed
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
            return n_points;
        }

        ////////////////////////////////////////////////////////////////////////////////////////////////////////
        // HarrisResponses

        __global__ void HarrisResponses(const PtrStepb img, const short2* loc_, float* response, const int npoints, const int blockSize, const float harris_k)
        {
            __shared__ int smem0[8 * 32];
            __shared__ int smem1[8 * 32];
            __shared__ int smem2[8 * 32];

            const int ptidx = blockIdx.x * blockDim.y + threadIdx.y;

            if (ptidx < npoints)
            {
                const short2 loc = loc_[ptidx];

                const int r = blockSize / 2;
                const int x0 = loc.x - r;
                const int y0 = loc.y - r;

                int a = 0, b = 0, c = 0;

                for (int ind = threadIdx.x; ind < blockSize * blockSize; ind += blockDim.x)
                {
                    const int i = ind / blockSize;
                    const int j = ind % blockSize;

                    int Ix = (img(y0 + i, x0 + j + 1) - img(y0 + i, x0 + j - 1)) * 2 +
                        (img(y0 + i - 1, x0 + j + 1) - img(y0 + i - 1, x0 + j - 1)) +
                        (img(y0 + i + 1, x0 + j + 1) - img(y0 + i + 1, x0 + j - 1));

                    int Iy = (img(y0 + i + 1, x0 + j) - img(y0 + i - 1, x0 + j)) * 2 +
                        (img(y0 + i + 1, x0 + j - 1) - img(y0 + i - 1, x0 + j - 1)) +
                        (img(y0 + i + 1, x0 + j + 1) - img(y0 + i - 1, x0 + j + 1));

                    a += Ix * Ix;
                    b += Iy * Iy;
                    c += Ix * Iy;
                }

                int* srow0 = smem0 + threadIdx.y * blockDim.x;
                int* srow1 = smem1 + threadIdx.y * blockDim.x;
                int* srow2 = smem2 + threadIdx.y * blockDim.x;

                plus<int> op;
                reduce<32>(smem_tuple(srow0, srow1, srow2), thrust::tie(a, b, c), threadIdx.x, thrust::make_tuple(op, op, op));

                if (threadIdx.x == 0)
                {
                    float scale = (1 << 2) * blockSize * 255.0f;
                    scale = 1.0f / scale;
                    const float scale_sq_sq = scale * scale * scale * scale;

                    response[ptidx] = ((float)a * b - (float)c * c - harris_k * ((float)a + b) * ((float)a + b)) * scale_sq_sq;
                }
            }
        }

        void HarrisResponses_gpu(PtrStepSzb img, const short2* loc, float* response, const int npoints, int blockSize, float harris_k, cudaStream_t stream)
        {
            dim3 block(32, 8);

            dim3 grid;
            grid.x = divUp(npoints, block.y);

            HarrisResponses<<<grid, block, 0, stream>>>(img, loc, response, npoints, blockSize, harris_k);

            cudaSafeCall( cudaGetLastError() );

            if (stream == 0)
                cudaSafeCall( cudaDeviceSynchronize() );
        }

        ////////////////////////////////////////////////////////////////////////////////////////////////////////
        // IC_Angle

        __constant__ int c_u_max[32];

        void loadUMax(const int* u_max, int count)
        {
            cudaSafeCall( cudaMemcpyToSymbol(c_u_max, u_max, count * sizeof(int)) );
        }

        __global__ void IC_Angle(const PtrStepb image, const short2* loc_, float* angle, const int npoints, const int half_k)
        {
            __shared__ int smem0[8 * 32];
            __shared__ int smem1[8 * 32];

            int* srow0 = smem0 + threadIdx.y * blockDim.x;
            int* srow1 = smem1 + threadIdx.y * blockDim.x;

            plus<int> op;

            const int ptidx = blockIdx.x * blockDim.y + threadIdx.y;

            if (ptidx < npoints)
            {
                int m_01 = 0, m_10 = 0;

                const short2 loc = loc_[ptidx];

                // Treat the center line differently, v=0
                for (int u = threadIdx.x - half_k; u <= half_k; u += blockDim.x)
                    m_10 += u * image(loc.y, loc.x + u);

                reduce<32>(srow0, m_10, threadIdx.x, op);

                for (int v = 1; v <= half_k; ++v)
                {
                    // Proceed over the two lines
                    int v_sum = 0;
                    int m_sum = 0;
                    const int d = c_u_max[v];

                    for (int u = threadIdx.x - d; u <= d; u += blockDim.x)
                    {
                        int val_plus = image(loc.y + v, loc.x + u);
                        int val_minus = image(loc.y - v, loc.x + u);

                        v_sum += (val_plus - val_minus);
                        m_sum += u * (val_plus + val_minus);
                    }

                    reduce<32>(smem_tuple(srow0, srow1), thrust::tie(v_sum, m_sum), threadIdx.x, thrust::make_tuple(op, op));

                    m_10 += m_sum;
                    m_01 += v * v_sum;
                }

                if (threadIdx.x == 0)
                {
                    float kp_dir = ::atan2f((float)m_01, (float)m_10);
wester committed
200 201
                    kp_dir += (kp_dir < 0) * (2.0f * CV_PI);
                    kp_dir *= 180.0f / CV_PI;
wester committed
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351

                    angle[ptidx] = kp_dir;
                }
            }
        }

        void IC_Angle_gpu(PtrStepSzb image, const short2* loc, float* angle, int npoints, int half_k, cudaStream_t stream)
        {
            dim3 block(32, 8);

            dim3 grid;
            grid.x = divUp(npoints, block.y);

            IC_Angle<<<grid, block, 0, stream>>>(image, loc, angle, npoints, half_k);

            cudaSafeCall( cudaGetLastError() );

            if (stream == 0)
                cudaSafeCall( cudaDeviceSynchronize() );
        }

        ////////////////////////////////////////////////////////////////////////////////////////////////////////
        // computeOrbDescriptor

        template <int WTA_K> struct OrbDescriptor;

        #define GET_VALUE(idx) \
            img(loc.y + __float2int_rn(pattern_x[idx] * sina + pattern_y[idx] * cosa), \
                loc.x + __float2int_rn(pattern_x[idx] * cosa - pattern_y[idx] * sina))

        template <> struct OrbDescriptor<2>
        {
            __device__ static int calc(const PtrStepb& img, short2 loc, const int* pattern_x, const int* pattern_y, float sina, float cosa, int i)
            {
                pattern_x += 16 * i;
                pattern_y += 16 * i;

                int t0, t1, val;

                t0 = GET_VALUE(0); t1 = GET_VALUE(1);
                val = t0 < t1;

                t0 = GET_VALUE(2); t1 = GET_VALUE(3);
                val |= (t0 < t1) << 1;

                t0 = GET_VALUE(4); t1 = GET_VALUE(5);
                val |= (t0 < t1) << 2;

                t0 = GET_VALUE(6); t1 = GET_VALUE(7);
                val |= (t0 < t1) << 3;

                t0 = GET_VALUE(8); t1 = GET_VALUE(9);
                val |= (t0 < t1) << 4;

                t0 = GET_VALUE(10); t1 = GET_VALUE(11);
                val |= (t0 < t1) << 5;

                t0 = GET_VALUE(12); t1 = GET_VALUE(13);
                val |= (t0 < t1) << 6;

                t0 = GET_VALUE(14); t1 = GET_VALUE(15);
                val |= (t0 < t1) << 7;

                return val;
            }
        };

        template <> struct OrbDescriptor<3>
        {
            __device__ static int calc(const PtrStepb& img, short2 loc, const int* pattern_x, const int* pattern_y, float sina, float cosa, int i)
            {
                pattern_x += 12 * i;
                pattern_y += 12 * i;

                int t0, t1, t2, val;

                t0 = GET_VALUE(0); t1 = GET_VALUE(1); t2 = GET_VALUE(2);
                val = t2 > t1 ? (t2 > t0 ? 2 : 0) : (t1 > t0);

                t0 = GET_VALUE(3); t1 = GET_VALUE(4); t2 = GET_VALUE(5);
                val |= (t2 > t1 ? (t2 > t0 ? 2 : 0) : (t1 > t0)) << 2;

                t0 = GET_VALUE(6); t1 = GET_VALUE(7); t2 = GET_VALUE(8);
                val |= (t2 > t1 ? (t2 > t0 ? 2 : 0) : (t1 > t0)) << 4;

                t0 = GET_VALUE(9); t1 = GET_VALUE(10); t2 = GET_VALUE(11);
                val |= (t2 > t1 ? (t2 > t0 ? 2 : 0) : (t1 > t0)) << 6;

                return val;
            }
        };

        template <> struct OrbDescriptor<4>
        {
            __device__ static int calc(const PtrStepb& img, short2 loc, const int* pattern_x, const int* pattern_y, float sina, float cosa, int i)
            {
                pattern_x += 16 * i;
                pattern_y += 16 * i;

                int t0, t1, t2, t3, k, val;
                int a, b;

                t0 = GET_VALUE(0); t1 = GET_VALUE(1);
                t2 = GET_VALUE(2); t3 = GET_VALUE(3);
                a = 0, b = 2;
                if( t1 > t0 ) t0 = t1, a = 1;
                if( t3 > t2 ) t2 = t3, b = 3;
                k = t0 > t2 ? a : b;
                val = k;

                t0 = GET_VALUE(4); t1 = GET_VALUE(5);
                t2 = GET_VALUE(6); t3 = GET_VALUE(7);
                a = 0, b = 2;
                if( t1 > t0 ) t0 = t1, a = 1;
                if( t3 > t2 ) t2 = t3, b = 3;
                k = t0 > t2 ? a : b;
                val |= k << 2;

                t0 = GET_VALUE(8); t1 = GET_VALUE(9);
                t2 = GET_VALUE(10); t3 = GET_VALUE(11);
                a = 0, b = 2;
                if( t1 > t0 ) t0 = t1, a = 1;
                if( t3 > t2 ) t2 = t3, b = 3;
                k = t0 > t2 ? a : b;
                val |= k << 4;

                t0 = GET_VALUE(12); t1 = GET_VALUE(13);
                t2 = GET_VALUE(14); t3 = GET_VALUE(15);
                a = 0, b = 2;
                if( t1 > t0 ) t0 = t1, a = 1;
                if( t3 > t2 ) t2 = t3, b = 3;
                k = t0 > t2 ? a : b;
                val |= k << 6;

                return val;
            }
        };

        #undef GET_VALUE

        template <int WTA_K>
        __global__ void computeOrbDescriptor(const PtrStepb img, const short2* loc, const float* angle_, const int npoints,
            const int* pattern_x, const int* pattern_y, PtrStepb desc, int dsize)
        {
            const int descidx = blockIdx.x * blockDim.x + threadIdx.x;
            const int ptidx = blockIdx.y * blockDim.y + threadIdx.y;

            if (ptidx < npoints && descidx < dsize)
            {
                float angle = angle_[ptidx];
wester committed
352
                angle *= (float)(CV_PI / 180.f);
wester committed
353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424

                float sina, cosa;
                ::sincosf(angle, &sina, &cosa);

                desc.ptr(ptidx)[descidx] = OrbDescriptor<WTA_K>::calc(img, loc[ptidx], pattern_x, pattern_y, sina, cosa, descidx);
            }
        }

        void computeOrbDescriptor_gpu(PtrStepb img, const short2* loc, const float* angle, const int npoints,
            const int* pattern_x, const int* pattern_y, PtrStepb desc, int dsize, int WTA_K, cudaStream_t stream)
        {
            dim3 block(32, 8);

            dim3 grid;
            grid.x = divUp(dsize, block.x);
            grid.y = divUp(npoints, block.y);

            switch (WTA_K)
            {
            case 2:
                computeOrbDescriptor<2><<<grid, block, 0, stream>>>(img, loc, angle, npoints, pattern_x, pattern_y, desc, dsize);
                break;

            case 3:
                computeOrbDescriptor<3><<<grid, block, 0, stream>>>(img, loc, angle, npoints, pattern_x, pattern_y, desc, dsize);
                break;

            case 4:
                computeOrbDescriptor<4><<<grid, block, 0, stream>>>(img, loc, angle, npoints, pattern_x, pattern_y, desc, dsize);
                break;
            }

            cudaSafeCall( cudaGetLastError() );

            if (stream == 0)
                cudaSafeCall( cudaDeviceSynchronize() );
        }

        ////////////////////////////////////////////////////////////////////////////////////////////////////////
        // mergeLocation

        __global__ void mergeLocation(const short2* loc_, float* x, float* y, const int npoints, float scale)
        {
            const int ptidx = blockIdx.x * blockDim.x + threadIdx.x;

            if (ptidx < npoints)
            {
                short2 loc = loc_[ptidx];

                x[ptidx] = loc.x * scale;
                y[ptidx] = loc.y * scale;
            }
        }

        void mergeLocation_gpu(const short2* loc, float* x, float* y, int npoints, float scale, cudaStream_t stream)
        {
            dim3 block(256);

            dim3 grid;
            grid.x = divUp(npoints, block.x);

            mergeLocation<<<grid, block, 0, stream>>>(loc, x, y, npoints, scale);

            cudaSafeCall( cudaGetLastError() );

            if (stream == 0)
                cudaSafeCall( cudaDeviceSynchronize() );
        }
    }
}}}

#endif /* CUDA_DISABLER */