match_template.cpp 24 KB
Newer Older
wester committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#include "precomp.hpp"

using namespace cv;
using namespace cv::cuda;

#if !defined (HAVE_CUDA) || !defined (HAVE_OPENCV_CUDAARITHM) || defined (CUDA_DISABLER)

Ptr<cuda::TemplateMatching> cv::cuda::createTemplateMatching(int, int, Size) { throw_no_cuda(); return Ptr<cuda::TemplateMatching>(); }

#else

namespace cv { namespace cuda { namespace device
{
    namespace match_template
    {
        void matchTemplateNaive_CCORR_8U(const PtrStepSzb image, const PtrStepSzb templ, PtrStepSzf result, int cn, cudaStream_t stream);
        void matchTemplateNaive_CCORR_32F(const PtrStepSzb image, const PtrStepSzb templ, PtrStepSzf result, int cn, cudaStream_t stream);

        void matchTemplateNaive_SQDIFF_8U(const PtrStepSzb image, const PtrStepSzb templ, PtrStepSzf result, int cn, cudaStream_t stream);
        void matchTemplateNaive_SQDIFF_32F(const PtrStepSzb image, const PtrStepSzb templ, PtrStepSzf result, int cn, cudaStream_t stream);

        void matchTemplatePrepared_SQDIFF_8U(int w, int h, const PtrStepSz<double> image_sqsum, double templ_sqsum, PtrStepSzf result,
            int cn, cudaStream_t stream);

        void matchTemplatePrepared_SQDIFF_NORMED_8U(int w, int h, const PtrStepSz<double> image_sqsum, double templ_sqsum, PtrStepSzf result,
            int cn, cudaStream_t stream);

        void matchTemplatePrepared_CCOFF_8U(int w, int h, const PtrStepSz<int> image_sum, int templ_sum, PtrStepSzf result, cudaStream_t stream);
        void matchTemplatePrepared_CCOFF_8UC2(
            int w, int h,
            const PtrStepSz<int> image_sum_r,
            const PtrStepSz<int> image_sum_g,
            int templ_sum_r,
            int templ_sum_g,
            PtrStepSzf result, cudaStream_t stream);
        void matchTemplatePrepared_CCOFF_8UC3(
                int w, int h,
                const PtrStepSz<int> image_sum_r,
                const PtrStepSz<int> image_sum_g,
                const PtrStepSz<int> image_sum_b,
                int templ_sum_r,
                int templ_sum_g,
                int templ_sum_b,
                PtrStepSzf result, cudaStream_t stream);
        void matchTemplatePrepared_CCOFF_8UC4(
                int w, int h,
                const PtrStepSz<int> image_sum_r,
                const PtrStepSz<int> image_sum_g,
                const PtrStepSz<int> image_sum_b,
                const PtrStepSz<int> image_sum_a,
                int templ_sum_r,
                int templ_sum_g,
                int templ_sum_b,
                int templ_sum_a,
                PtrStepSzf result, cudaStream_t stream);


        void matchTemplatePrepared_CCOFF_NORMED_8U(
                int w, int h, const PtrStepSz<int> image_sum,
                const PtrStepSz<double> image_sqsum,
                int templ_sum, double templ_sqsum,
                PtrStepSzf result, cudaStream_t stream);
        void matchTemplatePrepared_CCOFF_NORMED_8UC2(
                int w, int h,
                const PtrStepSz<int> image_sum_r, const PtrStepSz<double> image_sqsum_r,
                const PtrStepSz<int> image_sum_g, const PtrStepSz<double> image_sqsum_g,
                int templ_sum_r, double templ_sqsum_r,
                int templ_sum_g, double templ_sqsum_g,
                PtrStepSzf result, cudaStream_t stream);
        void matchTemplatePrepared_CCOFF_NORMED_8UC3(
                int w, int h,
                const PtrStepSz<int> image_sum_r, const PtrStepSz<double> image_sqsum_r,
                const PtrStepSz<int> image_sum_g, const PtrStepSz<double> image_sqsum_g,
                const PtrStepSz<int> image_sum_b, const PtrStepSz<double> image_sqsum_b,
                int templ_sum_r, double templ_sqsum_r,
                int templ_sum_g, double templ_sqsum_g,
                int templ_sum_b, double templ_sqsum_b,
                PtrStepSzf result, cudaStream_t stream);
        void matchTemplatePrepared_CCOFF_NORMED_8UC4(
                int w, int h,
                const PtrStepSz<int> image_sum_r, const PtrStepSz<double> image_sqsum_r,
                const PtrStepSz<int> image_sum_g, const PtrStepSz<double> image_sqsum_g,
                const PtrStepSz<int> image_sum_b, const PtrStepSz<double> image_sqsum_b,
                const PtrStepSz<int> image_sum_a, const PtrStepSz<double> image_sqsum_a,
                int templ_sum_r, double templ_sqsum_r,
                int templ_sum_g, double templ_sqsum_g,
                int templ_sum_b, double templ_sqsum_b,
                int templ_sum_a, double templ_sqsum_a,
                PtrStepSzf result, cudaStream_t stream);

        void normalize_8U(int w, int h, const PtrStepSz<double> image_sqsum,
                          double templ_sqsum, PtrStepSzf result, int cn, cudaStream_t stream);

        void extractFirstChannel_32F(const PtrStepSzb image, PtrStepSzf result, int cn, cudaStream_t stream);
    }
}}}

namespace
{
    // Evaluates optimal template's area threshold. If
    // template's area is less  than the threshold, we use naive match
    // template version, otherwise FFT-based (if available)
    int getTemplateThreshold(int method, int depth)
    {
        switch (method)
        {
        case TM_CCORR:
            if (depth == CV_32F) return 250;
            if (depth == CV_8U) return 300;
            break;

        case TM_SQDIFF:
            if (depth == CV_8U) return 300;
            break;
        }

        CV_Error(Error::StsBadArg, "unsupported match template mode");
        return 0;
    }

    ///////////////////////////////////////////////////////////////
    // CCORR_32F

    class Match_CCORR_32F : public TemplateMatching
    {
    public:
        explicit Match_CCORR_32F(Size user_block_size);

        void match(InputArray image, InputArray templ, OutputArray result, Stream& stream = Stream::Null());

    private:
        Ptr<cuda::Convolution> conv_;
        GpuMat result_;
    };

    Match_CCORR_32F::Match_CCORR_32F(Size user_block_size)
    {
        conv_ = cuda::createConvolution(user_block_size);
    }

    void Match_CCORR_32F::match(InputArray _image, InputArray _templ, OutputArray _result, Stream& _stream)
    {
        using namespace cv::cuda::device::match_template;

        GpuMat image = _image.getGpuMat();
        GpuMat templ = _templ.getGpuMat();

        CV_Assert( image.depth() == CV_32F );
        CV_Assert( image.type() == templ.type() );
        CV_Assert( image.cols >= templ.cols && image.rows >= templ.rows );

        cudaStream_t stream = StreamAccessor::getStream(_stream);

        _result.create(image.rows - templ.rows + 1, image.cols - templ.cols + 1, CV_32FC1);
        GpuMat result = _result.getGpuMat();

        if (templ.size().area() < getTemplateThreshold(TM_CCORR, CV_32F))
        {
            matchTemplateNaive_CCORR_32F(image, templ, result, image.channels(), stream);
            return;
        }

        if (image.channels() == 1)
        {
            conv_->convolve(image.reshape(1), templ.reshape(1), result, true, _stream);
        }
        else
        {
            conv_->convolve(image.reshape(1), templ.reshape(1), result_, true, _stream);
            extractFirstChannel_32F(result_, result, image.channels(), stream);
        }
    }

    ///////////////////////////////////////////////////////////////
    // CCORR_8U

    class Match_CCORR_8U : public TemplateMatching
    {
    public:
        explicit Match_CCORR_8U(Size user_block_size) : match32F_(user_block_size)
        {
        }

        void match(InputArray image, InputArray templ, OutputArray result, Stream& stream = Stream::Null());

    private:
        GpuMat imagef_, templf_;
        Match_CCORR_32F match32F_;
    };

    void Match_CCORR_8U::match(InputArray _image, InputArray _templ, OutputArray _result, Stream& stream)
    {
        using namespace cv::cuda::device::match_template;

        GpuMat image = _image.getGpuMat();
        GpuMat templ = _templ.getGpuMat();

        CV_Assert( image.depth() == CV_8U );
        CV_Assert( image.type() == templ.type() );
        CV_Assert( image.cols >= templ.cols && image.rows >= templ.rows );

        if (templ.size().area() < getTemplateThreshold(TM_CCORR, CV_8U))
        {
            _result.create(image.rows - templ.rows + 1, image.cols - templ.cols + 1, CV_32FC1);
            GpuMat result = _result.getGpuMat();

            matchTemplateNaive_CCORR_8U(image, templ, result, image.channels(), StreamAccessor::getStream(stream));
            return;
        }

        image.convertTo(imagef_, CV_32F, stream);
        templ.convertTo(templf_, CV_32F, stream);

        match32F_.match(imagef_, templf_, _result, stream);
    }

    ///////////////////////////////////////////////////////////////
    // CCORR_NORMED_8U

    class Match_CCORR_NORMED_8U : public TemplateMatching
    {
    public:
        explicit Match_CCORR_NORMED_8U(Size user_block_size) : match_CCORR_(user_block_size)
        {
        }

        void match(InputArray image, InputArray templ, OutputArray result, Stream& stream = Stream::Null());

    private:
        Match_CCORR_8U match_CCORR_;
        GpuMat image_sqsums_;
    };

    void Match_CCORR_NORMED_8U::match(InputArray _image, InputArray _templ, OutputArray _result, Stream& stream)
    {
        using namespace cv::cuda::device::match_template;

        GpuMat image = _image.getGpuMat();
        GpuMat templ = _templ.getGpuMat();

        CV_Assert( image.depth() == CV_8U );
        CV_Assert( image.type() == templ.type() );
        CV_Assert( image.cols >= templ.cols && image.rows >= templ.rows );

        match_CCORR_.match(image, templ, _result, stream);
        GpuMat result = _result.getGpuMat();

        cuda::sqrIntegral(image.reshape(1), image_sqsums_, stream);

        double templ_sqsum = cuda::sqrSum(templ.reshape(1))[0];

        normalize_8U(templ.cols, templ.rows, image_sqsums_, templ_sqsum, result, image.channels(), StreamAccessor::getStream(stream));
    }

    ///////////////////////////////////////////////////////////////
    // SQDIFF_32F

    class Match_SQDIFF_32F : public TemplateMatching
    {
    public:
        void match(InputArray image, InputArray templ, OutputArray result, Stream& stream = Stream::Null());
    };

    void Match_SQDIFF_32F::match(InputArray _image, InputArray _templ, OutputArray _result, Stream& stream)
    {
        using namespace cv::cuda::device::match_template;

        GpuMat image = _image.getGpuMat();
        GpuMat templ = _templ.getGpuMat();

        CV_Assert( image.depth() == CV_32F );
        CV_Assert( image.type() == templ.type() );
        CV_Assert( image.cols >= templ.cols && image.rows >= templ.rows );

        _result.create(image.rows - templ.rows + 1, image.cols - templ.cols + 1, CV_32FC1);
        GpuMat result = _result.getGpuMat();

        matchTemplateNaive_SQDIFF_32F(image, templ, result, image.channels(), StreamAccessor::getStream(stream));
    }

    ///////////////////////////////////////////////////////////////
    // SQDIFF_8U

    class Match_SQDIFF_8U : public TemplateMatching
    {
    public:
        explicit Match_SQDIFF_8U(Size user_block_size) : match_CCORR_(user_block_size)
        {
        }

        void match(InputArray image, InputArray templ, OutputArray result, Stream& stream = Stream::Null());

    private:
        GpuMat image_sqsums_;
        Match_CCORR_8U match_CCORR_;
    };

    void Match_SQDIFF_8U::match(InputArray _image, InputArray _templ, OutputArray _result, Stream& stream)
    {
        using namespace cv::cuda::device::match_template;

        GpuMat image = _image.getGpuMat();
        GpuMat templ = _templ.getGpuMat();

        CV_Assert( image.depth() == CV_8U );
        CV_Assert( image.type() == templ.type() );
        CV_Assert( image.cols >= templ.cols && image.rows >= templ.rows );

        if (templ.size().area() < getTemplateThreshold(TM_SQDIFF, CV_8U))
        {
            _result.create(image.rows - templ.rows + 1, image.cols - templ.cols + 1, CV_32FC1);
            GpuMat result = _result.getGpuMat();

            matchTemplateNaive_SQDIFF_8U(image, templ, result, image.channels(), StreamAccessor::getStream(stream));
            return;
        }

        cuda::sqrIntegral(image.reshape(1), image_sqsums_, stream);

        double templ_sqsum = cuda::sqrSum(templ.reshape(1))[0];

        match_CCORR_.match(image, templ, _result, stream);
        GpuMat result = _result.getGpuMat();

        matchTemplatePrepared_SQDIFF_8U(templ.cols, templ.rows, image_sqsums_, templ_sqsum, result, image.channels(), StreamAccessor::getStream(stream));
    }

    ///////////////////////////////////////////////////////////////
    // SQDIFF_NORMED_8U

    class Match_SQDIFF_NORMED_8U : public TemplateMatching
    {
    public:
        explicit Match_SQDIFF_NORMED_8U(Size user_block_size) : match_CCORR_(user_block_size)
        {
        }

        void match(InputArray image, InputArray templ, OutputArray result, Stream& stream = Stream::Null());

    private:
        GpuMat image_sqsums_;
        Match_CCORR_8U match_CCORR_;
    };

    void Match_SQDIFF_NORMED_8U::match(InputArray _image, InputArray _templ, OutputArray _result, Stream& stream)
    {
        using namespace cv::cuda::device::match_template;

        GpuMat image = _image.getGpuMat();
        GpuMat templ = _templ.getGpuMat();

        CV_Assert( image.depth() == CV_8U );
        CV_Assert( image.type() == templ.type() );
        CV_Assert( image.cols >= templ.cols && image.rows >= templ.rows );

        cuda::sqrIntegral(image.reshape(1), image_sqsums_, stream);

        double templ_sqsum = cuda::sqrSum(templ.reshape(1))[0];

        match_CCORR_.match(image, templ, _result, stream);
        GpuMat result = _result.getGpuMat();

        matchTemplatePrepared_SQDIFF_NORMED_8U(templ.cols, templ.rows, image_sqsums_, templ_sqsum, result, image.channels(), StreamAccessor::getStream(stream));
    }

    ///////////////////////////////////////////////////////////////
    // CCOFF_8U

    class Match_CCOEFF_8U : public TemplateMatching
    {
    public:
        explicit Match_CCOEFF_8U(Size user_block_size) : match_CCORR_(user_block_size)
        {
        }

        void match(InputArray image, InputArray templ, OutputArray result, Stream& stream = Stream::Null());

    private:
        std::vector<GpuMat> images_;
        std::vector<GpuMat> image_sums_;
        Match_CCORR_8U match_CCORR_;
    };

    void Match_CCOEFF_8U::match(InputArray _image, InputArray _templ, OutputArray _result, Stream& stream)
    {
        using namespace cv::cuda::device::match_template;

        GpuMat image = _image.getGpuMat();
        GpuMat templ = _templ.getGpuMat();

        CV_Assert( image.depth() == CV_8U );
        CV_Assert( image.type() == templ.type() );
        CV_Assert( image.cols >= templ.cols && image.rows >= templ.rows );

        match_CCORR_.match(image, templ, _result, stream);
        GpuMat result = _result.getGpuMat();

        if (image.channels() == 1)
        {
            image_sums_.resize(1);
            cuda::integral(image, image_sums_[0], stream);

            int templ_sum = (int) cuda::sum(templ)[0];

            matchTemplatePrepared_CCOFF_8U(templ.cols, templ.rows, image_sums_[0], templ_sum, result, StreamAccessor::getStream(stream));
        }
        else
        {
            cuda::split(image, images_);

            image_sums_.resize(images_.size());
            for (int i = 0; i < image.channels(); ++i)
                cuda::integral(images_[i], image_sums_[i], stream);

            Scalar templ_sum = cuda::sum(templ);

            switch (image.channels())
            {
            case 2:
                matchTemplatePrepared_CCOFF_8UC2(
                        templ.cols, templ.rows, image_sums_[0], image_sums_[1],
                        (int) templ_sum[0], (int) templ_sum[1],
                        result, StreamAccessor::getStream(stream));
                break;
            case 3:
                matchTemplatePrepared_CCOFF_8UC3(
                        templ.cols, templ.rows, image_sums_[0], image_sums_[1], image_sums_[2],
                        (int) templ_sum[0], (int) templ_sum[1], (int) templ_sum[2],
                        result, StreamAccessor::getStream(stream));
                break;
            case 4:
                matchTemplatePrepared_CCOFF_8UC4(
                        templ.cols, templ.rows, image_sums_[0], image_sums_[1], image_sums_[2], image_sums_[3],
                        (int) templ_sum[0], (int) templ_sum[1], (int) templ_sum[2], (int) templ_sum[3],
                        result, StreamAccessor::getStream(stream));
                break;
            default:
                CV_Error(Error::StsBadArg, "unsupported number of channels");
            }
        }
    }

    ///////////////////////////////////////////////////////////////
    // CCOFF_NORMED_8U

    class Match_CCOEFF_NORMED_8U : public TemplateMatching
    {
    public:
        explicit Match_CCOEFF_NORMED_8U(Size user_block_size) : match_CCORR_32F_(user_block_size)
        {
        }

        void match(InputArray image, InputArray templ, OutputArray result, Stream& stream = Stream::Null());

    private:
        GpuMat imagef_, templf_;
        Match_CCORR_32F match_CCORR_32F_;
        std::vector<GpuMat> images_;
        std::vector<GpuMat> image_sums_;
        std::vector<GpuMat> image_sqsums_;
    };

    void Match_CCOEFF_NORMED_8U::match(InputArray _image, InputArray _templ, OutputArray _result, Stream& stream)
    {
        using namespace cv::cuda::device::match_template;

        GpuMat image = _image.getGpuMat();
        GpuMat templ = _templ.getGpuMat();

        CV_Assert( image.depth() == CV_8U );
        CV_Assert( image.type() == templ.type() );
        CV_Assert( image.cols >= templ.cols && image.rows >= templ.rows );

        image.convertTo(imagef_, CV_32F, stream);
        templ.convertTo(templf_, CV_32F, stream);

        match_CCORR_32F_.match(imagef_, templf_, _result, stream);
        GpuMat result = _result.getGpuMat();

        if (image.channels() == 1)
        {
            image_sums_.resize(1);
            cuda::integral(image, image_sums_[0], stream);

            image_sqsums_.resize(1);
            cuda::sqrIntegral(image, image_sqsums_[0], stream);

            int templ_sum = (int) cuda::sum(templ)[0];
            double templ_sqsum = cuda::sqrSum(templ)[0];

            matchTemplatePrepared_CCOFF_NORMED_8U(
                    templ.cols, templ.rows, image_sums_[0], image_sqsums_[0],
                    templ_sum, templ_sqsum, result, StreamAccessor::getStream(stream));
        }
        else
        {
            cuda::split(image, images_);

            image_sums_.resize(images_.size());
            image_sqsums_.resize(images_.size());
            for (int i = 0; i < image.channels(); ++i)
            {
                cuda::integral(images_[i], image_sums_[i], stream);
                cuda::sqrIntegral(images_[i], image_sqsums_[i], stream);
            }

            Scalar templ_sum = cuda::sum(templ);
            Scalar templ_sqsum = cuda::sqrSum(templ);

            switch (image.channels())
            {
            case 2:
                matchTemplatePrepared_CCOFF_NORMED_8UC2(
                        templ.cols, templ.rows,
                        image_sums_[0], image_sqsums_[0],
                        image_sums_[1], image_sqsums_[1],
                        (int)templ_sum[0], templ_sqsum[0],
                        (int)templ_sum[1], templ_sqsum[1],
                        result, StreamAccessor::getStream(stream));
                break;
            case 3:
                matchTemplatePrepared_CCOFF_NORMED_8UC3(
                        templ.cols, templ.rows,
                        image_sums_[0], image_sqsums_[0],
                        image_sums_[1], image_sqsums_[1],
                        image_sums_[2], image_sqsums_[2],
                        (int)templ_sum[0], templ_sqsum[0],
                        (int)templ_sum[1], templ_sqsum[1],
                        (int)templ_sum[2], templ_sqsum[2],
                        result, StreamAccessor::getStream(stream));
                break;
            case 4:
                matchTemplatePrepared_CCOFF_NORMED_8UC4(
                        templ.cols, templ.rows,
                        image_sums_[0], image_sqsums_[0],
                        image_sums_[1], image_sqsums_[1],
                        image_sums_[2], image_sqsums_[2],
                        image_sums_[3], image_sqsums_[3],
                        (int)templ_sum[0], templ_sqsum[0],
                        (int)templ_sum[1], templ_sqsum[1],
                        (int)templ_sum[2], templ_sqsum[2],
                        (int)templ_sum[3], templ_sqsum[3],
                        result, StreamAccessor::getStream(stream));
                break;
            default:
                CV_Error(Error::StsBadArg, "unsupported number of channels");
            }
        }
    }
}

Ptr<cuda::TemplateMatching> cv::cuda::createTemplateMatching(int srcType, int method, Size user_block_size)
{
    const int sdepth = CV_MAT_DEPTH(srcType);

    CV_Assert( sdepth == CV_8U || sdepth == CV_32F );

    if (sdepth == CV_32F)
    {
        switch (method)
        {
        case TM_SQDIFF:
            return makePtr<Match_SQDIFF_32F>();

        case TM_CCORR:
            return makePtr<Match_CCORR_32F>(user_block_size);

        default:
            CV_Error( Error::StsBadFlag, "Unsopported method" );
            return Ptr<cuda::TemplateMatching>();
        }
    }
    else
    {
        switch (method)
        {
        case TM_SQDIFF:
            return makePtr<Match_SQDIFF_8U>(user_block_size);

        case TM_SQDIFF_NORMED:
            return makePtr<Match_SQDIFF_NORMED_8U>(user_block_size);

        case TM_CCORR:
            return makePtr<Match_CCORR_8U>(user_block_size);

        case TM_CCORR_NORMED:
            return makePtr<Match_CCORR_NORMED_8U>(user_block_size);

        case TM_CCOEFF:
            return makePtr<Match_CCOEFF_8U>(user_block_size);

        case TM_CCOEFF_NORMED:
            return makePtr<Match_CCOEFF_NORMED_8U>(user_block_size);

        default:
            CV_Error( Error::StsBadFlag, "Unsopported method" );
            return Ptr<cuda::TemplateMatching>();
        }
    }
}

#endif