fundam.cpp 33.9 KB
Newer Older
wester committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                          License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#include "precomp.hpp"
#include "rho.h"
#include <iostream>

namespace cv
{

static bool haveCollinearPoints( const Mat& m, int count )
{
    int j, k, i = count-1;
    const Point2f* ptr = m.ptr<Point2f>();

    // check that the i-th selected point does not belong
    // to a line connecting some previously selected points
    for( j = 0; j < i; j++ )
    {
        double dx1 = ptr[j].x - ptr[i].x;
        double dy1 = ptr[j].y - ptr[i].y;
        for( k = 0; k < j; k++ )
        {
            double dx2 = ptr[k].x - ptr[i].x;
            double dy2 = ptr[k].y - ptr[i].y;
            if( fabs(dx2*dy1 - dy2*dx1) <= FLT_EPSILON*(fabs(dx1) + fabs(dy1) + fabs(dx2) + fabs(dy2)))
                return true;
        }
    }
    return false;
}


class HomographyEstimatorCallback : public PointSetRegistrator::Callback
{
public:
    bool checkSubset( InputArray _ms1, InputArray _ms2, int count ) const
    {
        Mat ms1 = _ms1.getMat(), ms2 = _ms2.getMat();
        if( haveCollinearPoints(ms1, count) || haveCollinearPoints(ms2, count) )
            return false;

        // We check whether the minimal set of points for the homography estimation
        // are geometrically consistent. We check if every 3 correspondences sets
        // fulfills the constraint.
        //
        // The usefullness of this constraint is explained in the paper:
        //
        // "Speeding-up homography estimation in mobile devices"
        // Journal of Real-Time Image Processing. 2013. DOI: 10.1007/s11554-012-0314-1
        // Pablo Marquez-Neila, Javier Lopez-Alberca, Jose M. Buenaposada, Luis Baumela
        if( count == 4 )
        {
            static const int tt[][3] = {{0, 1, 2}, {1, 2, 3}, {0, 2, 3}, {0, 1, 3}};
            const Point2f* src = ms1.ptr<Point2f>();
            const Point2f* dst = ms2.ptr<Point2f>();
            int negative = 0;

            for( int i = 0; i < 4; i++ )
            {
                const int* t = tt[i];
                Matx33d A(src[t[0]].x, src[t[0]].y, 1., src[t[1]].x, src[t[1]].y, 1., src[t[2]].x, src[t[2]].y, 1.);
                Matx33d B(dst[t[0]].x, dst[t[0]].y, 1., dst[t[1]].x, dst[t[1]].y, 1., dst[t[2]].x, dst[t[2]].y, 1.);

                negative += determinant(A)*determinant(B) < 0;
            }
            if( negative != 0 && negative != 4 )
                return false;
        }

        return true;
    }

    int runKernel( InputArray _m1, InputArray _m2, OutputArray _model ) const
    {
        Mat m1 = _m1.getMat(), m2 = _m2.getMat();
        int i, count = m1.checkVector(2);
        const Point2f* M = m1.ptr<Point2f>();
        const Point2f* m = m2.ptr<Point2f>();

        double LtL[9][9], W[9][1], V[9][9];
        Mat _LtL( 9, 9, CV_64F, &LtL[0][0] );
        Mat matW( 9, 1, CV_64F, W );
        Mat matV( 9, 9, CV_64F, V );
        Mat _H0( 3, 3, CV_64F, V[8] );
        Mat _Htemp( 3, 3, CV_64F, V[7] );
        Point2d cM(0,0), cm(0,0), sM(0,0), sm(0,0);

        for( i = 0; i < count; i++ )
        {
            cm.x += m[i].x; cm.y += m[i].y;
            cM.x += M[i].x; cM.y += M[i].y;
        }

        cm.x /= count;
        cm.y /= count;
        cM.x /= count;
        cM.y /= count;

        for( i = 0; i < count; i++ )
        {
            sm.x += fabs(m[i].x - cm.x);
            sm.y += fabs(m[i].y - cm.y);
            sM.x += fabs(M[i].x - cM.x);
            sM.y += fabs(M[i].y - cM.y);
        }

        if( fabs(sm.x) < DBL_EPSILON || fabs(sm.y) < DBL_EPSILON ||
            fabs(sM.x) < DBL_EPSILON || fabs(sM.y) < DBL_EPSILON )
            return 0;
        sm.x = count/sm.x; sm.y = count/sm.y;
        sM.x = count/sM.x; sM.y = count/sM.y;

        double invHnorm[9] = { 1./sm.x, 0, cm.x, 0, 1./sm.y, cm.y, 0, 0, 1 };
        double Hnorm2[9] = { sM.x, 0, -cM.x*sM.x, 0, sM.y, -cM.y*sM.y, 0, 0, 1 };
        Mat _invHnorm( 3, 3, CV_64FC1, invHnorm );
        Mat _Hnorm2( 3, 3, CV_64FC1, Hnorm2 );

        _LtL.setTo(Scalar::all(0));
        for( i = 0; i < count; i++ )
        {
            double x = (m[i].x - cm.x)*sm.x, y = (m[i].y - cm.y)*sm.y;
            double X = (M[i].x - cM.x)*sM.x, Y = (M[i].y - cM.y)*sM.y;
            double Lx[] = { X, Y, 1, 0, 0, 0, -x*X, -x*Y, -x };
            double Ly[] = { 0, 0, 0, X, Y, 1, -y*X, -y*Y, -y };
            int j, k;
            for( j = 0; j < 9; j++ )
                for( k = j; k < 9; k++ )
                    LtL[j][k] += Lx[j]*Lx[k] + Ly[j]*Ly[k];
        }
        completeSymm( _LtL );

        eigen( _LtL, matW, matV );
        _Htemp = _invHnorm*_H0;
        _H0 = _Htemp*_Hnorm2;
        _H0.convertTo(_model, _H0.type(), 1./_H0.at<double>(2,2) );

        return 1;
    }

    void computeError( InputArray _m1, InputArray _m2, InputArray _model, OutputArray _err ) const
    {
        Mat m1 = _m1.getMat(), m2 = _m2.getMat(), model = _model.getMat();
        int i, count = m1.checkVector(2);
        const Point2f* M = m1.ptr<Point2f>();
        const Point2f* m = m2.ptr<Point2f>();
        const double* H = model.ptr<double>();
        float Hf[] = { (float)H[0], (float)H[1], (float)H[2], (float)H[3], (float)H[4], (float)H[5], (float)H[6], (float)H[7] };

        _err.create(count, 1, CV_32F);
        float* err = _err.getMat().ptr<float>();

        for( i = 0; i < count; i++ )
        {
            float ww = 1.f/(Hf[6]*M[i].x + Hf[7]*M[i].y + 1.f);
            float dx = (Hf[0]*M[i].x + Hf[1]*M[i].y + Hf[2])*ww - m[i].x;
            float dy = (Hf[3]*M[i].x + Hf[4]*M[i].y + Hf[5])*ww - m[i].y;
            err[i] = (float)(dx*dx + dy*dy);
        }
    }
};


class HomographyRefineCallback : public LMSolver::Callback
{
public:
    HomographyRefineCallback(InputArray _src, InputArray _dst)
    {
        src = _src.getMat();
        dst = _dst.getMat();
    }

    bool compute(InputArray _param, OutputArray _err, OutputArray _Jac) const
    {
        int i, count = src.checkVector(2);
        Mat param = _param.getMat();
        _err.create(count*2, 1, CV_64F);
        Mat err = _err.getMat(), J;
        if( _Jac.needed())
        {
            _Jac.create(count*2, param.rows, CV_64F);
            J = _Jac.getMat();
            CV_Assert( J.isContinuous() && J.cols == 8 );
        }

        const Point2f* M = src.ptr<Point2f>();
        const Point2f* m = dst.ptr<Point2f>();
        const double* h = param.ptr<double>();
        double* errptr = err.ptr<double>();
        double* Jptr = J.data ? J.ptr<double>() : 0;

        for( i = 0; i < count; i++ )
        {
            double Mx = M[i].x, My = M[i].y;
            double ww = h[6]*Mx + h[7]*My + 1.;
            ww = fabs(ww) > DBL_EPSILON ? 1./ww : 0;
            double xi = (h[0]*Mx + h[1]*My + h[2])*ww;
            double yi = (h[3]*Mx + h[4]*My + h[5])*ww;
            errptr[i*2] = xi - m[i].x;
            errptr[i*2+1] = yi - m[i].y;

            if( Jptr )
            {
                Jptr[0] = Mx*ww; Jptr[1] = My*ww; Jptr[2] = ww;
                Jptr[3] = Jptr[4] = Jptr[5] = 0.;
                Jptr[6] = -Mx*ww*xi; Jptr[7] = -My*ww*xi;
                Jptr[8] = Jptr[9] = Jptr[10] = 0.;
                Jptr[11] = Mx*ww; Jptr[12] = My*ww; Jptr[13] = ww;
                Jptr[14] = -Mx*ww*yi; Jptr[15] = -My*ww*yi;

                Jptr += 16;
            }
        }

        return true;
    }

    Mat src, dst;
};

}



namespace cv{
static bool createAndRunRHORegistrator(double confidence,
                                       int    maxIters,
                                       double ransacReprojThreshold,
                                       int    npoints,
                                       InputArray  _src,
                                       InputArray  _dst,
                                       OutputArray _H,
                                       OutputArray _tempMask){
    Mat    src = _src.getMat();
    Mat    dst = _dst.getMat();
    Mat    tempMask;
    bool   result;
    double beta = 0.35;/* 0.35 is a value that often works. */

    /* Create temporary output matrix (RHO outputs a single-precision H only). */
    Mat tmpH = Mat(3, 3, CV_32FC1);

    /* Create output mask. */
    tempMask = Mat(npoints, 1, CV_8U);

    /**
     * Make use of the RHO estimator API.
     *
     * This is where the math happens. A homography estimation context is
     * initialized, used, then finalized.
     */

    Ptr<RHO_HEST> p = rhoInit();

    /**
     * Optional. Ideally, the context would survive across calls to
     * findHomography(), but no clean way appears to exit to do so. The price
     * to pay is marginally more computational work than strictly needed.
     */

    rhoEnsureCapacity(p, npoints, beta);

    /**
     * The critical call. All parameters are heavily documented in rhorefc.h.
     *
     * Currently, NR (Non-Randomness criterion) and Final Refinement (with
     * internal, optimized Levenberg-Marquardt method) are enabled. However,
     * while refinement seems to correctly smooth jitter most of the time, when
     * refinement fails it tends to make the estimate visually very much worse.
     * It may be necessary to remove the refinement flags in a future commit if
     * this behaviour is too problematic.
     */

    result = !!rhoHest(p,
                      (const float*)src.data,
                      (const float*)dst.data,
                      (char*)       tempMask.data,
                      (unsigned)    npoints,
                      (float)       ransacReprojThreshold,
                      (unsigned)    maxIters,
                      (unsigned)    maxIters,
                      confidence,
                      4U,
                      beta,
                      RHO_FLAG_ENABLE_NR | RHO_FLAG_ENABLE_FINAL_REFINEMENT,
                      NULL,
                      (float*)tmpH.data);

    /* Convert float homography to double precision. */
    tmpH.convertTo(_H, CV_64FC1);

    /* Maps non-zero mask elems to 1, for the sake of the testcase. */
    for(int k=0;k<npoints;k++){
        tempMask.data[k] = !!tempMask.data[k];
    }
    tempMask.copyTo(_tempMask);

    return result;
}
}


cv::Mat cv::findHomography( InputArray _points1, InputArray _points2,
                            int method, double ransacReprojThreshold, OutputArray _mask,
                            const int maxIters, const double confidence)
{
    const double defaultRANSACReprojThreshold = 3;
    bool result = false;

    Mat points1 = _points1.getMat(), points2 = _points2.getMat();
    Mat src, dst, H, tempMask;
    int npoints = -1;

    for( int i = 1; i <= 2; i++ )
    {
        Mat& p = i == 1 ? points1 : points2;
        Mat& m = i == 1 ? src : dst;
        npoints = p.checkVector(2, -1, false);
        if( npoints < 0 )
        {
            npoints = p.checkVector(3, -1, false);
            if( npoints < 0 )
                CV_Error(Error::StsBadArg, "The input arrays should be 2D or 3D point sets");
            if( npoints == 0 )
                return Mat();
            convertPointsFromHomogeneous(p, p);
        }
        p.reshape(2, npoints).convertTo(m, CV_32F);
    }

    CV_Assert( src.checkVector(2) == dst.checkVector(2) );

    if( ransacReprojThreshold <= 0 )
        ransacReprojThreshold = defaultRANSACReprojThreshold;

    Ptr<PointSetRegistrator::Callback> cb = makePtr<HomographyEstimatorCallback>();

    if( method == 0 || npoints == 4 )
    {
        tempMask = Mat::ones(npoints, 1, CV_8U);
        result = cb->runKernel(src, dst, H) > 0;
    }
    else if( method == RANSAC )
        result = createRANSACPointSetRegistrator(cb, 4, ransacReprojThreshold, confidence, maxIters)->run(src, dst, H, tempMask);
    else if( method == LMEDS )
        result = createLMeDSPointSetRegistrator(cb, 4, confidence, maxIters)->run(src, dst, H, tempMask);
    else if( method == RHO )
        result = createAndRunRHORegistrator(confidence, maxIters, ransacReprojThreshold, npoints, src, dst, H, tempMask);
    else
        CV_Error(Error::StsBadArg, "Unknown estimation method");

    if( result && npoints > 4 && method != RHO)
    {
        compressElems( src.ptr<Point2f>(), tempMask.ptr<uchar>(), 1, npoints );
        npoints = compressElems( dst.ptr<Point2f>(), tempMask.ptr<uchar>(), 1, npoints );
        if( npoints > 0 )
        {
            Mat src1 = src.rowRange(0, npoints);
            Mat dst1 = dst.rowRange(0, npoints);
            src = src1;
            dst = dst1;
            if( method == RANSAC || method == LMEDS )
                cb->runKernel( src, dst, H );
            Mat H8(8, 1, CV_64F, H.ptr<double>());
            createLMSolver(makePtr<HomographyRefineCallback>(src, dst), 10)->run(H8);
        }
    }

    if( result )
    {
        if( _mask.needed() )
            tempMask.copyTo(_mask);
    }
    else
        H.release();

    return H;
}

cv::Mat cv::findHomography( InputArray _points1, InputArray _points2,
                           OutputArray _mask, int method, double ransacReprojThreshold )
{
    return cv::findHomography(_points1, _points2, method, ransacReprojThreshold, _mask);
}



/* Estimation of Fundamental Matrix from point correspondences.
   The original code has been written by Valery Mosyagin */

/* The algorithms (except for RANSAC) and the notation have been taken from
   Zhengyou Zhang's research report
   "Determining the Epipolar Geometry and its Uncertainty: A Review"
   that can be found at http://www-sop.inria.fr/robotvis/personnel/zzhang/zzhang-eng.html */

/************************************** 7-point algorithm *******************************/
namespace cv
{

static int run7Point( const Mat& _m1, const Mat& _m2, Mat& _fmatrix )
{
    double a[7*9], w[7], u[9*9], v[9*9], c[4], r[3];
    double* f1, *f2;
    double t0, t1, t2;
    Mat A( 7, 9, CV_64F, a );
    Mat U( 7, 9, CV_64F, u );
    Mat Vt( 9, 9, CV_64F, v );
    Mat W( 7, 1, CV_64F, w );
    Mat coeffs( 1, 4, CV_64F, c );
    Mat roots( 1, 3, CV_64F, r );
    const Point2f* m1 = _m1.ptr<Point2f>();
    const Point2f* m2 = _m2.ptr<Point2f>();
    double* fmatrix = _fmatrix.ptr<double>();
    int i, k, n;

    // form a linear system: i-th row of A(=a) represents
    // the equation: (m2[i], 1)'*F*(m1[i], 1) = 0
    for( i = 0; i < 7; i++ )
    {
        double x0 = m1[i].x, y0 = m1[i].y;
        double x1 = m2[i].x, y1 = m2[i].y;

        a[i*9+0] = x1*x0;
        a[i*9+1] = x1*y0;
        a[i*9+2] = x1;
        a[i*9+3] = y1*x0;
        a[i*9+4] = y1*y0;
        a[i*9+5] = y1;
        a[i*9+6] = x0;
        a[i*9+7] = y0;
        a[i*9+8] = 1;
    }

    // A*(f11 f12 ... f33)' = 0 is singular (7 equations for 9 variables), so
    // the solution is linear subspace of dimensionality 2.
    // => use the last two singular vectors as a basis of the space
    // (according to SVD properties)
    SVDecomp( A, W, U, Vt, SVD::MODIFY_A + SVD::FULL_UV );
    f1 = v + 7*9;
    f2 = v + 8*9;

    // f1, f2 is a basis => lambda*f1 + mu*f2 is an arbitrary f. matrix.
    // as it is determined up to a scale, normalize lambda & mu (lambda + mu = 1),
    // so f ~ lambda*f1 + (1 - lambda)*f2.
    // use the additional constraint det(f) = det(lambda*f1 + (1-lambda)*f2) to find lambda.
    // it will be a cubic equation.
    // find c - polynomial coefficients.
    for( i = 0; i < 9; i++ )
        f1[i] -= f2[i];

    t0 = f2[4]*f2[8] - f2[5]*f2[7];
    t1 = f2[3]*f2[8] - f2[5]*f2[6];
    t2 = f2[3]*f2[7] - f2[4]*f2[6];

    c[3] = f2[0]*t0 - f2[1]*t1 + f2[2]*t2;

    c[2] = f1[0]*t0 - f1[1]*t1 + f1[2]*t2 -
    f1[3]*(f2[1]*f2[8] - f2[2]*f2[7]) +
    f1[4]*(f2[0]*f2[8] - f2[2]*f2[6]) -
    f1[5]*(f2[0]*f2[7] - f2[1]*f2[6]) +
    f1[6]*(f2[1]*f2[5] - f2[2]*f2[4]) -
    f1[7]*(f2[0]*f2[5] - f2[2]*f2[3]) +
    f1[8]*(f2[0]*f2[4] - f2[1]*f2[3]);

    t0 = f1[4]*f1[8] - f1[5]*f1[7];
    t1 = f1[3]*f1[8] - f1[5]*f1[6];
    t2 = f1[3]*f1[7] - f1[4]*f1[6];

    c[1] = f2[0]*t0 - f2[1]*t1 + f2[2]*t2 -
    f2[3]*(f1[1]*f1[8] - f1[2]*f1[7]) +
    f2[4]*(f1[0]*f1[8] - f1[2]*f1[6]) -
    f2[5]*(f1[0]*f1[7] - f1[1]*f1[6]) +
    f2[6]*(f1[1]*f1[5] - f1[2]*f1[4]) -
    f2[7]*(f1[0]*f1[5] - f1[2]*f1[3]) +
    f2[8]*(f1[0]*f1[4] - f1[1]*f1[3]);

    c[0] = f1[0]*t0 - f1[1]*t1 + f1[2]*t2;

    // solve the cubic equation; there can be 1 to 3 roots ...
    n = solveCubic( coeffs, roots );

    if( n < 1 || n > 3 )
        return n;

    for( k = 0; k < n; k++, fmatrix += 9 )
    {
        // for each root form the fundamental matrix
        double lambda = r[k], mu = 1.;
        double s = f1[8]*r[k] + f2[8];

        // normalize each matrix, so that F(3,3) (~fmatrix[8]) == 1
        if( fabs(s) > DBL_EPSILON )
        {
            mu = 1./s;
            lambda *= mu;
            fmatrix[8] = 1.;
        }
        else
            fmatrix[8] = 0.;

        for( i = 0; i < 8; i++ )
            fmatrix[i] = f1[i]*lambda + f2[i]*mu;
    }

    return n;
}


static int run8Point( const Mat& _m1, const Mat& _m2, Mat& _fmatrix )
{
    Point2d m1c(0,0), m2c(0,0);
    double t, scale1 = 0, scale2 = 0;

    const Point2f* m1 = _m1.ptr<Point2f>();
    const Point2f* m2 = _m2.ptr<Point2f>();
    CV_Assert( (_m1.cols == 1 || _m1.rows == 1) && _m1.size() == _m2.size());
    int i, count = _m1.checkVector(2);

    // compute centers and average distances for each of the two point sets
    for( i = 0; i < count; i++ )
    {
        m1c += Point2d(m1[i]);
        m2c += Point2d(m2[i]);
    }

    // calculate the normalizing transformations for each of the point sets:
    // after the transformation each set will have the mass center at the coordinate origin
    // and the average distance from the origin will be ~sqrt(2).
    t = 1./count;
    m1c *= t;
    m2c *= t;

    for( i = 0; i < count; i++ )
    {
        scale1 += norm(Point2d(m1[i].x - m1c.x, m1[i].y - m1c.y));
        scale2 += norm(Point2d(m2[i].x - m2c.x, m2[i].y - m2c.y));
    }

    scale1 *= t;
    scale2 *= t;

    if( scale1 < FLT_EPSILON || scale2 < FLT_EPSILON )
        return 0;

    scale1 = std::sqrt(2.)/scale1;
    scale2 = std::sqrt(2.)/scale2;

    Matx<double, 9, 9> A;

    // form a linear system Ax=0: for each selected pair of points m1 & m2,
    // the row of A(=a) represents the coefficients of equation: (m2, 1)'*F*(m1, 1) = 0
    // to save computation time, we compute (At*A) instead of A and then solve (At*A)x=0.
    for( i = 0; i < count; i++ )
    {
        double x1 = (m1[i].x - m1c.x)*scale1;
        double y1 = (m1[i].y - m1c.y)*scale1;
        double x2 = (m2[i].x - m2c.x)*scale2;
        double y2 = (m2[i].y - m2c.y)*scale2;
        Vec<double, 9> r( x2*x1, x2*y1, x2, y2*x1, y2*y1, y2, x1, y1, 1 );
        A += r*r.t();
    }

    Vec<double, 9> W;
    Matx<double, 9, 9> V;

    eigen(A, W, V);

    for( i = 0; i < 9; i++ )
    {
        if( fabs(W[i]) < DBL_EPSILON )
            break;
    }

    if( i < 8 )
        return 0;

    Matx33d F0( V.val + 9*8 ); // take the last column of v as a solution of Af = 0

    // make F0 singular (of rank 2) by decomposing it with SVD,
    // zeroing the last diagonal element of W and then composing the matrices back.

    Vec3d w;
    Matx33d U;
    Matx33d Vt;

    SVD::compute( F0, w, U, Vt);
    w[2] = 0.;

    F0 = U*Matx33d::diag(w)*Vt;

    // apply the transformation that is inverse
    // to what we used to normalize the point coordinates
    Matx33d T1( scale1, 0, -scale1*m1c.x, 0, scale1, -scale1*m1c.y, 0, 0, 1 );
    Matx33d T2( scale2, 0, -scale2*m2c.x, 0, scale2, -scale2*m2c.y, 0, 0, 1 );

    F0 = T2.t()*F0*T1;

    // make F(3,3) = 1
    if( fabs(F0(2,2)) > FLT_EPSILON )
        F0 *= 1./F0(2,2);

    Mat(F0).copyTo(_fmatrix);

    return 1;
}


class FMEstimatorCallback : public PointSetRegistrator::Callback
{
public:
    bool checkSubset( InputArray _ms1, InputArray _ms2, int count ) const
    {
        Mat ms1 = _ms1.getMat(), ms2 = _ms2.getMat();
        return !haveCollinearPoints(ms1, count) && !haveCollinearPoints(ms2, count);
    }

    int runKernel( InputArray _m1, InputArray _m2, OutputArray _model ) const
    {
        double f[9*3];
        Mat m1 = _m1.getMat(), m2 = _m2.getMat();
        int count = m1.checkVector(2);
        Mat F(count == 7 ? 9 : 3, 3, CV_64F, f);
        int n = count == 7 ? run7Point(m1, m2, F) : run8Point(m1, m2, F);

        if( n == 0 )
            _model.release();
        else
            F.rowRange(0, n*3).copyTo(_model);

        return n;
    }

    void computeError( InputArray _m1, InputArray _m2, InputArray _model, OutputArray _err ) const
    {
        Mat __m1 = _m1.getMat(), __m2 = _m2.getMat(), __model = _model.getMat();
        int i, count = __m1.checkVector(2);
        const Point2f* m1 = __m1.ptr<Point2f>();
        const Point2f* m2 = __m2.ptr<Point2f>();
        const double* F = __model.ptr<double>();
        _err.create(count, 1, CV_32F);
        float* err = _err.getMat().ptr<float>();

        for( i = 0; i < count; i++ )
        {
            double a, b, c, d1, d2, s1, s2;

            a = F[0]*m1[i].x + F[1]*m1[i].y + F[2];
            b = F[3]*m1[i].x + F[4]*m1[i].y + F[5];
            c = F[6]*m1[i].x + F[7]*m1[i].y + F[8];

            s2 = 1./(a*a + b*b);
            d2 = m2[i].x*a + m2[i].y*b + c;

            a = F[0]*m2[i].x + F[3]*m2[i].y + F[6];
            b = F[1]*m2[i].x + F[4]*m2[i].y + F[7];
            c = F[2]*m2[i].x + F[5]*m2[i].y + F[8];

            s1 = 1./(a*a + b*b);
            d1 = m1[i].x*a + m1[i].y*b + c;

            err[i] = (float)std::max(d1*d1*s1, d2*d2*s2);
        }
    }
};

}

cv::Mat cv::findFundamentalMat( InputArray _points1, InputArray _points2,
                                int method, double param1, double param2,
                                OutputArray _mask )
{
    Mat points1 = _points1.getMat(), points2 = _points2.getMat();
    Mat m1, m2, F;
    int npoints = -1;

    for( int i = 1; i <= 2; i++ )
    {
        Mat& p = i == 1 ? points1 : points2;
        Mat& m = i == 1 ? m1 : m2;
        npoints = p.checkVector(2, -1, false);
        if( npoints < 0 )
        {
            npoints = p.checkVector(3, -1, false);
            if( npoints < 0 )
                CV_Error(Error::StsBadArg, "The input arrays should be 2D or 3D point sets");
            if( npoints == 0 )
                return Mat();
            convertPointsFromHomogeneous(p, p);
        }
        p.reshape(2, npoints).convertTo(m, CV_32F);
    }

    CV_Assert( m1.checkVector(2) == m2.checkVector(2) );

    if( npoints < 7 )
        return Mat();

    Ptr<PointSetRegistrator::Callback> cb = makePtr<FMEstimatorCallback>();
    int result;

    if( npoints == 7 || method == FM_8POINT )
    {
        result = cb->runKernel(m1, m2, F);
        if( _mask.needed() )
        {
            _mask.create(npoints, 1, CV_8U, -1, true);
            Mat mask = _mask.getMat();
            CV_Assert( (mask.cols == 1 || mask.rows == 1) && (int)mask.total() == npoints );
            mask.setTo(Scalar::all(1));
        }
    }
    else
    {
        if( param1 <= 0 )
            param1 = 3;
        if( param2 < DBL_EPSILON || param2 > 1 - DBL_EPSILON )
            param2 = 0.99;

        if( (method & ~3) == FM_RANSAC && npoints >= 15 )
            result = createRANSACPointSetRegistrator(cb, 7, param1, param2)->run(m1, m2, F, _mask);
        else
            result = createLMeDSPointSetRegistrator(cb, 7, param2)->run(m1, m2, F, _mask);
    }

    if( result <= 0 )
        return Mat();

    return F;
}

cv::Mat cv::findFundamentalMat( InputArray _points1, InputArray _points2,
                               OutputArray _mask, int method, double param1, double param2 )
{
    return cv::findFundamentalMat(_points1, _points2, method, param1, param2, _mask);
}


void cv::computeCorrespondEpilines( InputArray _points, int whichImage,
                                    InputArray _Fmat, OutputArray _lines )
{
    double f[9];
    Mat tempF(3, 3, CV_64F, f);
    Mat points = _points.getMat(), F = _Fmat.getMat();

    if( !points.isContinuous() )
        points = points.clone();

    int npoints = points.checkVector(2);
    if( npoints < 0 )
    {
        npoints = points.checkVector(3);
        if( npoints < 0 )
            CV_Error( Error::StsBadArg, "The input should be a 2D or 3D point set");
        Mat temp;
        convertPointsFromHomogeneous(points, temp);
        points = temp;
    }
    int depth = points.depth();
    CV_Assert( depth == CV_32F || depth == CV_32S || depth == CV_64F );

    CV_Assert(F.size() == Size(3,3));
    F.convertTo(tempF, CV_64F);
    if( whichImage == 2 )
        transpose(tempF, tempF);

    int ltype = CV_MAKETYPE(MAX(depth, CV_32F), 3);
    _lines.create(npoints, 1, ltype);
    Mat lines = _lines.getMat();
    if( !lines.isContinuous() )
    {
        _lines.release();
        _lines.create(npoints, 1, ltype);
        lines = _lines.getMat();
    }
    CV_Assert( lines.isContinuous());

    if( depth == CV_32S || depth == CV_32F )
    {
        const Point* ptsi = points.ptr<Point>();
        const Point2f* ptsf = points.ptr<Point2f>();
        Point3f* dstf = lines.ptr<Point3f>();
        for( int i = 0; i < npoints; i++ )
        {
            Point2f pt = depth == CV_32F ? ptsf[i] : Point2f((float)ptsi[i].x, (float)ptsi[i].y);
            double a = f[0]*pt.x + f[1]*pt.y + f[2];
            double b = f[3]*pt.x + f[4]*pt.y + f[5];
            double c = f[6]*pt.x + f[7]*pt.y + f[8];
            double nu = a*a + b*b;
            nu = nu ? 1./std::sqrt(nu) : 1.;
            a *= nu; b *= nu; c *= nu;
            dstf[i] = Point3f((float)a, (float)b, (float)c);
        }
    }
    else
    {
        const Point2d* ptsd = points.ptr<Point2d>();
        Point3d* dstd = lines.ptr<Point3d>();
        for( int i = 0; i < npoints; i++ )
        {
            Point2d pt = ptsd[i];
            double a = f[0]*pt.x + f[1]*pt.y + f[2];
            double b = f[3]*pt.x + f[4]*pt.y + f[5];
            double c = f[6]*pt.x + f[7]*pt.y + f[8];
            double nu = a*a + b*b;
            nu = nu ? 1./std::sqrt(nu) : 1.;
            a *= nu; b *= nu; c *= nu;
            dstd[i] = Point3d(a, b, c);
        }
    }
}

void cv::convertPointsFromHomogeneous( InputArray _src, OutputArray _dst )
{
    Mat src = _src.getMat();
    if( !src.isContinuous() )
        src = src.clone();
    int i, npoints = src.checkVector(3), depth = src.depth(), cn = 3;
    if( npoints < 0 )
    {
        npoints = src.checkVector(4);
        CV_Assert(npoints >= 0);
        cn = 4;
    }
    CV_Assert( npoints >= 0 && (depth == CV_32S || depth == CV_32F || depth == CV_64F));

    int dtype = CV_MAKETYPE(depth <= CV_32F ? CV_32F : CV_64F, cn-1);
    _dst.create(npoints, 1, dtype);
    Mat dst = _dst.getMat();
    if( !dst.isContinuous() )
    {
        _dst.release();
        _dst.create(npoints, 1, dtype);
        dst = _dst.getMat();
    }
    CV_Assert( dst.isContinuous() );

    if( depth == CV_32S )
    {
        if( cn == 3 )
        {
            const Point3i* sptr = src.ptr<Point3i>();
            Point2f* dptr = dst.ptr<Point2f>();
            for( i = 0; i < npoints; i++ )
            {
                float scale = sptr[i].z != 0 ? 1.f/sptr[i].z : 1.f;
                dptr[i] = Point2f(sptr[i].x*scale, sptr[i].y*scale);
            }
        }
        else
        {
            const Vec4i* sptr = src.ptr<Vec4i>();
            Point3f* dptr = dst.ptr<Point3f>();
            for( i = 0; i < npoints; i++ )
            {
                float scale = sptr[i][3] != 0 ? 1.f/sptr[i][3] : 1.f;
                dptr[i] = Point3f(sptr[i][0]*scale, sptr[i][1]*scale, sptr[i][2]*scale);
            }
        }
    }
    else if( depth == CV_32F )
    {
        if( cn == 3 )
        {
            const Point3f* sptr = src.ptr<Point3f>();
            Point2f* dptr = dst.ptr<Point2f>();
            for( i = 0; i < npoints; i++ )
            {
                float scale = sptr[i].z != 0.f ? 1.f/sptr[i].z : 1.f;
                dptr[i] = Point2f(sptr[i].x*scale, sptr[i].y*scale);
            }
        }
        else
        {
            const Vec4f* sptr = src.ptr<Vec4f>();
            Point3f* dptr = dst.ptr<Point3f>();
            for( i = 0; i < npoints; i++ )
            {
                float scale = sptr[i][3] != 0.f ? 1.f/sptr[i][3] : 1.f;
                dptr[i] = Point3f(sptr[i][0]*scale, sptr[i][1]*scale, sptr[i][2]*scale);
            }
        }
    }
    else if( depth == CV_64F )
    {
        if( cn == 3 )
        {
            const Point3d* sptr = src.ptr<Point3d>();
            Point2d* dptr = dst.ptr<Point2d>();
            for( i = 0; i < npoints; i++ )
            {
                double scale = sptr[i].z != 0. ? 1./sptr[i].z : 1.;
                dptr[i] = Point2d(sptr[i].x*scale, sptr[i].y*scale);
            }
        }
        else
        {
            const Vec4d* sptr = src.ptr<Vec4d>();
            Point3d* dptr = dst.ptr<Point3d>();
            for( i = 0; i < npoints; i++ )
            {
                double scale = sptr[i][3] != 0.f ? 1./sptr[i][3] : 1.;
                dptr[i] = Point3d(sptr[i][0]*scale, sptr[i][1]*scale, sptr[i][2]*scale);
            }
        }
    }
    else
        CV_Error(Error::StsUnsupportedFormat, "");
}


void cv::convertPointsToHomogeneous( InputArray _src, OutputArray _dst )
{
    Mat src = _src.getMat();
    if( !src.isContinuous() )
        src = src.clone();
    int i, npoints = src.checkVector(2), depth = src.depth(), cn = 2;
    if( npoints < 0 )
    {
        npoints = src.checkVector(3);
        CV_Assert(npoints >= 0);
        cn = 3;
    }
    CV_Assert( npoints >= 0 && (depth == CV_32S || depth == CV_32F || depth == CV_64F));

    int dtype = CV_MAKETYPE(depth <= CV_32F ? CV_32F : CV_64F, cn+1);
    _dst.create(npoints, 1, dtype);
    Mat dst = _dst.getMat();
    if( !dst.isContinuous() )
    {
        _dst.release();
        _dst.create(npoints, 1, dtype);
        dst = _dst.getMat();
    }
    CV_Assert( dst.isContinuous() );

    if( depth == CV_32S )
    {
        if( cn == 2 )
        {
            const Point2i* sptr = src.ptr<Point2i>();
            Point3i* dptr = dst.ptr<Point3i>();
            for( i = 0; i < npoints; i++ )
                dptr[i] = Point3i(sptr[i].x, sptr[i].y, 1);
        }
        else
        {
            const Point3i* sptr = src.ptr<Point3i>();
            Vec4i* dptr = dst.ptr<Vec4i>();
            for( i = 0; i < npoints; i++ )
                dptr[i] = Vec4i(sptr[i].x, sptr[i].y, sptr[i].z, 1);
        }
    }
    else if( depth == CV_32F )
    {
        if( cn == 2 )
        {
            const Point2f* sptr = src.ptr<Point2f>();
            Point3f* dptr = dst.ptr<Point3f>();
            for( i = 0; i < npoints; i++ )
                dptr[i] = Point3f(sptr[i].x, sptr[i].y, 1.f);
        }
        else
        {
            const Point3f* sptr = src.ptr<Point3f>();
            Vec4f* dptr = dst.ptr<Vec4f>();
            for( i = 0; i < npoints; i++ )
                dptr[i] = Vec4f(sptr[i].x, sptr[i].y, sptr[i].z, 1.f);
        }
    }
    else if( depth == CV_64F )
    {
        if( cn == 2 )
        {
            const Point2d* sptr = src.ptr<Point2d>();
            Point3d* dptr = dst.ptr<Point3d>();
            for( i = 0; i < npoints; i++ )
                dptr[i] = Point3d(sptr[i].x, sptr[i].y, 1.);
        }
        else
        {
            const Point3d* sptr = src.ptr<Point3d>();
            Vec4d* dptr = dst.ptr<Vec4d>();
            for( i = 0; i < npoints; i++ )
                dptr[i] = Vec4d(sptr[i].x, sptr[i].y, sptr[i].z, 1.);
        }
    }
    else
        CV_Error(Error::StsUnsupportedFormat, "");
}


void cv::convertPointsHomogeneous( InputArray _src, OutputArray _dst )
{
    int stype = _src.type(), dtype = _dst.type();
    CV_Assert( _dst.fixedType() );

    if( CV_MAT_CN(stype) > CV_MAT_CN(dtype) )
        convertPointsFromHomogeneous(_src, _dst);
    else
        convertPointsToHomogeneous(_src, _dst);
}

double cv::sampsonDistance(InputArray _pt1, InputArray _pt2, InputArray _F) {
    CV_Assert(_pt1.type() == CV_64F && _pt1.type() == CV_64F && _F.type() == CV_64F);
    CV_DbgAssert(_pt1.rows() == 3 && _F.size() == Size(3, 3) && _pt1.rows() == _pt2.rows());

    Mat pt1(_pt1.getMat());
    Mat pt2(_pt2.getMat());
    Mat F(_F.getMat());

    Vec3d F_pt1 = *F.ptr<Matx33d>() * *pt1.ptr<Vec3d>();
    Vec3d Ft_pt2 = F.ptr<Matx33d>()->t() * *pt2.ptr<Vec3d>();

    double v = pt2.ptr<Vec3d>()->dot(F_pt1);

    // square
    Ft_pt2 = Ft_pt2.mul(Ft_pt2);
    F_pt1 = F_pt1.mul(F_pt1);

    return v*v / (F_pt1[0] + F_pt1[1] + Ft_pt2[0] + Ft_pt2[1]);
}

/* End of file. */