calib3d.cu 8.36 KB
Newer Older
wester committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#if !defined CUDA_DISABLER

#include "opencv2/core/cuda/common.hpp"
#include "opencv2/core/cuda/transform.hpp"
#include "opencv2/core/cuda/functional.hpp"
#include "opencv2/core/cuda/reduce.hpp"

namespace cv { namespace cuda { namespace device
{
    #define SOLVE_PNP_RANSAC_MAX_NUM_ITERS 200

    namespace transform_points
    {
        __constant__ float3 crot0;
        __constant__ float3 crot1;
        __constant__ float3 crot2;
        __constant__ float3 ctransl;

        struct TransformOp : unary_function<float3, float3>
        {
            __device__ __forceinline__ float3 operator()(const float3& p) const
            {
                return make_float3(
                        crot0.x * p.x + crot0.y * p.y + crot0.z * p.z + ctransl.x,
                        crot1.x * p.x + crot1.y * p.y + crot1.z * p.z + ctransl.y,
                        crot2.x * p.x + crot2.y * p.y + crot2.z * p.z + ctransl.z);
            }
            __host__ __device__ __forceinline__ TransformOp() {}
            __host__ __device__ __forceinline__ TransformOp(const TransformOp&) {}
        };

        void call(const PtrStepSz<float3> src, const float* rot,
                  const float* transl, PtrStepSz<float3> dst,
                  cudaStream_t stream)
        {
            cudaSafeCall(cudaMemcpyToSymbol(crot0, rot, sizeof(float) * 3));
            cudaSafeCall(cudaMemcpyToSymbol(crot1, rot + 3, sizeof(float) * 3));
            cudaSafeCall(cudaMemcpyToSymbol(crot2, rot + 6, sizeof(float) * 3));
            cudaSafeCall(cudaMemcpyToSymbol(ctransl, transl, sizeof(float) * 3));
            cv::cuda::device::transform(src, dst, TransformOp(), WithOutMask(), stream);
        }
    } // namespace transform_points

    namespace project_points
    {
        __constant__ float3 crot0;
        __constant__ float3 crot1;
        __constant__ float3 crot2;
        __constant__ float3 ctransl;
        __constant__ float3 cproj0;
        __constant__ float3 cproj1;

        struct ProjectOp : unary_function<float3, float3>
        {
            __device__ __forceinline__ float2 operator()(const float3& p) const
            {
                // Rotate and translate in 3D
                float3 t = make_float3(
                        crot0.x * p.x + crot0.y * p.y + crot0.z * p.z + ctransl.x,
                        crot1.x * p.x + crot1.y * p.y + crot1.z * p.z + ctransl.y,
                        crot2.x * p.x + crot2.y * p.y + crot2.z * p.z + ctransl.z);
                // Project on 2D plane
                return make_float2(
                        (cproj0.x * t.x + cproj0.y * t.y) / t.z + cproj0.z,
                        (cproj1.x * t.x + cproj1.y * t.y) / t.z + cproj1.z);
            }
            __host__ __device__ __forceinline__ ProjectOp() {}
            __host__ __device__ __forceinline__ ProjectOp(const ProjectOp&) {}
        };

        void call(const PtrStepSz<float3> src, const float* rot,
                  const float* transl, const float* proj, PtrStepSz<float2> dst,
                  cudaStream_t stream)
        {
            cudaSafeCall(cudaMemcpyToSymbol(crot0, rot, sizeof(float) * 3));
            cudaSafeCall(cudaMemcpyToSymbol(crot1, rot + 3, sizeof(float) * 3));
            cudaSafeCall(cudaMemcpyToSymbol(crot2, rot + 6, sizeof(float) * 3));
            cudaSafeCall(cudaMemcpyToSymbol(ctransl, transl, sizeof(float) * 3));
            cudaSafeCall(cudaMemcpyToSymbol(cproj0, proj, sizeof(float) * 3));
            cudaSafeCall(cudaMemcpyToSymbol(cproj1, proj + 3, sizeof(float) * 3));
            cv::cuda::device::transform(src, dst, ProjectOp(), WithOutMask(), stream);
        }
    } // namespace project_points

    namespace solve_pnp_ransac
    {
        __constant__ float3 crot_matrices[SOLVE_PNP_RANSAC_MAX_NUM_ITERS * 3];
        __constant__ float3 ctransl_vectors[SOLVE_PNP_RANSAC_MAX_NUM_ITERS];

        int maxNumIters()
        {
            return SOLVE_PNP_RANSAC_MAX_NUM_ITERS;
        }

        __device__ __forceinline__ float sqr(float x)
        {
            return x * x;
        }

        template <int BLOCK_SIZE>
        __global__ void computeHypothesisScoresKernel(
                const int num_points, const float3* object, const float2* image,
                const float dist_threshold, int* g_num_inliers)
        {
            const float3* const &rot_mat = crot_matrices + blockIdx.x * 3;
            const float3 &transl_vec = ctransl_vectors[blockIdx.x];
            int num_inliers = 0;

            for (int i = threadIdx.x; i < num_points; i += blockDim.x)
            {
                float3 p = object[i];
                p = make_float3(
                        rot_mat[0].x * p.x + rot_mat[0].y * p.y + rot_mat[0].z * p.z + transl_vec.x,
                        rot_mat[1].x * p.x + rot_mat[1].y * p.y + rot_mat[1].z * p.z + transl_vec.y,
                        rot_mat[2].x * p.x + rot_mat[2].y * p.y + rot_mat[2].z * p.z + transl_vec.z);
                p.x /= p.z;
                p.y /= p.z;
                float2 image_p = image[i];
                if (sqr(p.x - image_p.x) + sqr(p.y - image_p.y) < dist_threshold)
                    ++num_inliers;
            }

            __shared__ int s_num_inliers[BLOCK_SIZE];
            reduce<BLOCK_SIZE>(s_num_inliers, num_inliers, threadIdx.x, plus<int>());

            if (threadIdx.x == 0)
                g_num_inliers[blockIdx.x] = num_inliers;
        }

        void computeHypothesisScores(
                const int num_hypotheses, const int num_points, const float* rot_matrices,
                const float3* transl_vectors, const float3* object, const float2* image,
                const float dist_threshold, int* hypothesis_scores)
        {
            cudaSafeCall(cudaMemcpyToSymbol(crot_matrices, rot_matrices, num_hypotheses * 3 * sizeof(float3)));
            cudaSafeCall(cudaMemcpyToSymbol(ctransl_vectors, transl_vectors, num_hypotheses * sizeof(float3)));

            dim3 threads(256);
            dim3 grid(num_hypotheses);

            computeHypothesisScoresKernel<256><<<grid, threads>>>(
                    num_points, object, image, dist_threshold, hypothesis_scores);
            cudaSafeCall( cudaGetLastError() );

            cudaSafeCall( cudaDeviceSynchronize() );
        }
    } // namespace solvepnp_ransac
}}} // namespace cv { namespace cuda { namespace cudev


#endif /* CUDA_DISABLER */