gftt.cpp 13.3 KB
Newer Older
wester committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// @Authors
//    Peng Xiao, pengxiao@outlook.com
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors as is and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#include "opencl_kernels.hpp"

using namespace cv;
using namespace cv::ocl;

// currently sort procedure on the host is more efficient
static bool use_cpu_sorter = true;

// compact structure for corners
struct DefCorner
{
    float eig;  //eigenvalue of corner
    short x;    //x coordinate of corner point
    short y;    //y coordinate of corner point
} ;

// compare procedure for corner
//it is used for sort on the host side
struct DefCornerCompare
{
    bool operator()(const DefCorner a, const DefCorner b) const
    {
        return a.eig > b.eig;
    }
};

// sort corner point using opencl bitonicosrt implementation
static void sortCorners_caller(oclMat& corners, const int count)
{
    Context * cxt = Context::getContext();
    int     GS = count/2;
    int     LS = min(255,GS);
    size_t  globalThreads[3] = {(size_t)GS, 1, 1};
    size_t  localThreads[3]  = {(size_t)LS, 1, 1};

    // 2^numStages should be equal to count or the output is invalid
    int numStages = 0;
    for(int i = count; i > 1; i >>= 1)
    {
        ++numStages;
    }
    const int argc = 4;
    std::vector< std::pair<size_t, const void *> > args(argc);
    std::string kernelname = "sortCorners_bitonicSort";
    args[0] = std::make_pair(sizeof(cl_mem), (void *)&corners.data);
    args[1] = std::make_pair(sizeof(cl_int), (void *)&count);
    for(int stage = 0; stage < numStages; ++stage)
    {
        args[2] = std::make_pair(sizeof(cl_int), (void *)&stage);
        for(int passOfStage = 0; passOfStage < stage + 1; ++passOfStage)
        {
            args[3] = std::make_pair(sizeof(cl_int), (void *)&passOfStage);
            openCLExecuteKernel(cxt, &imgproc_gftt, kernelname, globalThreads, localThreads, args, -1, -1);
        }
    }
}

// find corners on matrix and put it into array
static void findCorners_caller(
    const oclMat&   eig_mat,        //input matrix worth eigenvalues
    oclMat&         eigMinMax,      //input with min and max values of eigenvalues
    const float     qualityLevel,
    const oclMat&   mask,
    oclMat&         corners,        //output array with detected corners
    oclMat&         counter)        //output value with number of detected corners, have to be 0 before call
{
    string  opt;
    Context * cxt = Context::getContext();

    std::vector< std::pair<size_t, const void*> > args;

    const int mask_strip = mask.step / mask.elemSize1();

    args.push_back(make_pair( sizeof(cl_mem),   (void*)&(eig_mat.data)));

    int src_pitch = (int)eig_mat.step;
    args.push_back(make_pair( sizeof(cl_int),   (void*)&src_pitch ));
    args.push_back(make_pair( sizeof(cl_mem),   (void*)&mask.data ));
    args.push_back(make_pair( sizeof(cl_mem),   (void*)&corners.data ));
    args.push_back(make_pair( sizeof(cl_int),   (void*)&mask_strip));
    args.push_back(make_pair( sizeof(cl_mem),   (void*)&eigMinMax.data ));
    args.push_back(make_pair( sizeof(cl_float), (void*)&qualityLevel ));
    args.push_back(make_pair( sizeof(cl_int),   (void*)&eig_mat.rows ));
    args.push_back(make_pair( sizeof(cl_int),   (void*)&eig_mat.cols ));
    args.push_back(make_pair( sizeof(cl_int),   (void*)&corners.cols ));
    args.push_back(make_pair( sizeof(cl_mem),   (void*)&counter.data ));

    size_t globalThreads[3] = {(size_t)eig_mat.cols, (size_t)eig_mat.rows, 1};
    size_t localThreads[3]  = {16, 16, 1};
    if(!mask.empty())
        opt += " -D WITH_MASK=1";

     openCLExecuteKernel(cxt, &imgproc_gftt, "findCorners", globalThreads, localThreads, args, -1, -1, opt.c_str());
}


static void minMaxEig_caller(const oclMat &src, oclMat &dst, oclMat & tozero)
{
    size_t groupnum = src.clCxt->getDeviceInfo().maxComputeUnits;
    CV_Assert(groupnum != 0);

    int dbsize = groupnum * 2 * src.elemSize();
    ensureSizeIsEnough(1, dbsize, CV_8UC1, dst);

    cl_mem dst_data = reinterpret_cast<cl_mem>(dst.data);

    int vElemSize = src.elemSize1();
    int src_step = src.step / vElemSize, src_offset = src.offset / vElemSize;
    int total = src.size().area();

    {
        // first parallel pass
        vector<pair<size_t , const void *> > args;
        args.push_back( make_pair( sizeof(cl_mem) , (void *)&src.data));
        args.push_back( make_pair( sizeof(cl_int) , (void *)&src_step));
        args.push_back( make_pair( sizeof(cl_int) , (void *)&src_offset));
        args.push_back( make_pair( sizeof(cl_int) , (void *)&src.rows ));
        args.push_back( make_pair( sizeof(cl_int) , (void *)&src.cols ));
        args.push_back( make_pair( sizeof(cl_int) , (void *)&total));
        args.push_back( make_pair( sizeof(cl_int) , (void *)&groupnum));
        args.push_back( make_pair( sizeof(cl_mem) , (void *)&dst_data ));
        size_t globalThreads[3] = {(size_t)groupnum * 256, 1, 1};
        size_t localThreads[3] = {256, 1, 1};
        openCLExecuteKernel(src.clCxt, &arithm_minMax, "arithm_op_minMax", globalThreads, localThreads,
                            args, -1, -1, "-D T=float -D DEPTH_5 -D vlen=1");
    }

    {
        // run final "serial" kernel to find accumulate results from threads and reset corner counter
        vector<pair<size_t , const void *> > args;
        args.push_back( make_pair( sizeof(cl_mem) , (void *)&dst_data ));
        args.push_back( make_pair( sizeof(cl_int) , (void *)&groupnum ));
        args.push_back( make_pair( sizeof(cl_mem) , (void *)&tozero.data ));
        size_t globalThreads[3] = {1, 1, 1};
        size_t localThreads[3] = {1, 1, 1};
        openCLExecuteKernel(src.clCxt, &imgproc_gftt, "arithm_op_minMax_final", globalThreads, localThreads,
                            args, -1, -1);
    }
}

void cv::ocl::GoodFeaturesToTrackDetector_OCL::operator ()(const oclMat& image, oclMat& corners, const oclMat& mask)
{
    CV_Assert(qualityLevel > 0 && minDistance >= 0 && maxCorners >= 0);
    CV_Assert(mask.empty() || (mask.type() == CV_8UC1 && mask.size() == image.size()));

    ensureSizeIsEnough(image.size(), CV_32F, eig_);

    if (useHarrisDetector)
        cornerHarris_dxdy(image, eig_, Dx_, Dy_, blockSize, 3, harrisK);
    else
        cornerMinEigenVal_dxdy(image, eig_, Dx_, Dy_, blockSize, 3);

    ensureSizeIsEnough(1,1, CV_32SC1, counter_);

    // find max eigenvalue and reset detected counters
    minMaxEig_caller(eig_,eig_minmax_,counter_);

    // allocate buffer for kernels
    int corner_array_size = std::max(1024, static_cast<int>(image.size().area() * 0.05));

    if(!use_cpu_sorter)
    {   // round to 2^n
        unsigned int n=1;
        for(n=1;n<(unsigned int)corner_array_size;n<<=1) ;
        corner_array_size = (int)n;

        ensureSizeIsEnough(1, corner_array_size , CV_32FC2, tmpCorners_);

        // set to 0 to be able use bitonic sort on whole 2^n array
        tmpCorners_.setTo(0);
    }
    else
    {
        ensureSizeIsEnough(1, corner_array_size , CV_32FC2, tmpCorners_);
    }

    int total = tmpCorners_.cols; // by default the number of corner is full array
    vector<DefCorner>   tmp(tmpCorners_.cols); // input buffer with corner for HOST part of algorithm

    //find points with high eigenvalue and put it into the output array
    findCorners_caller(
        eig_,
        eig_minmax_,
        static_cast<float>(qualityLevel),
        mask,
        tmpCorners_,
        counter_);

    if(!use_cpu_sorter)
    {// sort detected corners on deivce side
        sortCorners_caller(tmpCorners_, corner_array_size);
    }
    else
    {// send non-blocking request to read real non-zero number of corners to sort it on the HOST side
        openCLVerifyCall(clEnqueueReadBuffer(getClCommandQueue(counter_.clCxt), (cl_mem)counter_.data, CL_FALSE, 0,sizeof(int), &total, 0, NULL, NULL));
    }

    //blocking read whole corners array (sorted or not sorted)
    openCLReadBuffer(tmpCorners_.clCxt,(cl_mem)tmpCorners_.data,&tmp[0],tmpCorners_.cols*sizeof(DefCorner));

    if (total == 0)
    {// check for trivial case
        corners.release();
        return;
    }

    if(use_cpu_sorter)
    {// sort detected corners on cpu side.
        tmp.resize(total);
        cv::sort(tmp,DefCornerCompare());
    }

    //estimate maximal size of final output array
    int total_max = maxCorners > 0 ? std::min(maxCorners, total) : total;
    int D2 = (int)ceil(minDistance * minDistance);
    // allocate output buffer
    vector<Point2f> tmp2;
    tmp2.reserve(total_max);


    if (minDistance < 1)
    {// we have not distance restriction. then just copy with conversion maximal allowed points into output array
        for(int i=0;i<total_max && tmp[i].eig>0.0f;++i)
        {
            tmp2.push_back(Point2f(tmp[i].x,tmp[i].y));
        }
    }
    else
    {// we have distance restriction. then start coping to output array from the first element and check distance for each next one
        const int cell_size = cvRound(minDistance);
        const int grid_width = (image.cols + cell_size - 1) / cell_size;
        const int grid_height = (image.rows + cell_size - 1) / cell_size;

        std::vector< std::vector<Point2i> > grid(grid_width * grid_height);

        for (int i = 0; i < total ; ++i)
        {
            DefCorner p = tmp[i];

            if(p.eig<=0.0f)
                break; // condition to stop that is needed for GPU bitonic sort usage.

            bool good = true;

            int x_cell = static_cast<int>(p.x / cell_size);
            int y_cell = static_cast<int>(p.y / cell_size);

            int x1 = x_cell - 1;
            int y1 = y_cell - 1;
            int x2 = x_cell + 1;
            int y2 = y_cell + 1;

            // boundary check
            x1 = std::max(0, x1);
            y1 = std::max(0, y1);
            x2 = std::min(grid_width - 1, x2);
            y2 = std::min(grid_height - 1, y2);

            for (int yy = y1; yy <= y2; yy++)
            {
                for (int xx = x1; xx <= x2; xx++)
                {
                    vector<Point2i>& m = grid[yy * grid_width + xx];
                    if (m.empty())
                        continue;
                    for(size_t j = 0; j < m.size(); j++)
                    {
                        int dx = p.x - m[j].x;
                        int dy = p.y - m[j].y;

                        if (dx * dx + dy * dy < D2)
                        {
                            good = false;
                            goto break_out_;
                        }
                    }
                }
            }

            break_out_:

            if(good)
            {
                grid[y_cell * grid_width + x_cell].push_back(Point2i(p.x,p.y));

                tmp2.push_back(Point2f(p.x,p.y));

                if (maxCorners > 0 && tmp2.size() == static_cast<size_t>(maxCorners))
                    break;
            }
        }

    }
    int final_size = static_cast<int>(tmp2.size());
    if(final_size>0)
        corners.upload(Mat(1, final_size, CV_32FC2, &tmp2[0]));
    else
        corners.release();
}
void cv::ocl::GoodFeaturesToTrackDetector_OCL::downloadPoints(const oclMat &points, vector<Point2f> &points_v)
{
    CV_DbgAssert(points.type() == CV_32FC2);
    points_v.resize(points.cols);
    openCLSafeCall(clEnqueueReadBuffer(
        *(cl_command_queue*)getClCommandQueuePtr(),
        reinterpret_cast<cl_mem>(points.data),
        CL_TRUE,
        0,
        points.cols * sizeof(Point2f),
        &points_v[0],
        0,
        NULL,
        NULL));
}