dls.h 25.9 KB
Newer Older
wester committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722
#ifndef DLS_H_
#define DLS_H_

#include "precomp.hpp"

#include <iostream>

using namespace std;
using namespace cv;

class dls
{
public:
    dls(const cv::Mat& opoints, const cv::Mat& ipoints);
    ~dls();

    bool compute_pose(cv::Mat& R, cv::Mat& t);

private:

    // initialisation
    template <typename OpointType, typename IpointType>
    void init_points(const cv::Mat& opoints, const cv::Mat& ipoints)
    {
        for(int i = 0; i < N; i++)
        {
            p.at<double>(0,i) = opoints.at<OpointType>(i).x;
            p.at<double>(1,i) = opoints.at<OpointType>(i).y;
            p.at<double>(2,i) = opoints.at<OpointType>(i).z;

            // compute mean of object points
            mn.at<double>(0) += p.at<double>(0,i);
            mn.at<double>(1) += p.at<double>(1,i);
            mn.at<double>(2) += p.at<double>(2,i);

            // make z into unit vectors from normalized pixel coords
            double sr = std::pow(ipoints.at<IpointType>(i).x, 2) +
                        std::pow(ipoints.at<IpointType>(i).y, 2) + (double)1;
                   sr = std::sqrt(sr);

            z.at<double>(0,i) = ipoints.at<IpointType>(i).x / sr;
            z.at<double>(1,i) = ipoints.at<IpointType>(i).y / sr;
            z.at<double>(2,i) = (double)1 / sr;
        }

        mn.at<double>(0) /= (double)N;
        mn.at<double>(1) /= (double)N;
        mn.at<double>(2) /= (double)N;
    }

    // main algorithm
    cv::Mat LeftMultVec(const cv::Mat& v);
    void run_kernel(const cv::Mat& pp);
    void build_coeff_matrix(const cv::Mat& pp, cv::Mat& Mtilde, cv::Mat& D);
    void compute_eigenvec(const cv::Mat& Mtilde, cv::Mat& eigenval_real, cv::Mat& eigenval_imag,
                                                 cv::Mat& eigenvec_real, cv::Mat& eigenvec_imag);
    void fill_coeff(const cv::Mat * D);

    // useful functions
    cv::Mat cayley_LS_M(const std::vector<double>& a, const std::vector<double>& b,
                        const std::vector<double>& c, const std::vector<double>& u);
    cv::Mat Hessian(const double s[]);
    cv::Mat cayley2rotbar(const cv::Mat& s);
    cv::Mat skewsymm(const cv::Mat * X1);

    // extra functions
    cv::Mat rotx(const double t);
    cv::Mat roty(const double t);
    cv::Mat rotz(const double t);
    cv::Mat mean(const cv::Mat& M);
    bool is_empty(const cv::Mat * v);
    bool positive_eigenvalues(const cv::Mat * eigenvalues);

    cv::Mat p, z, mn;        // object-image points
    int N;                // number of input points
    std::vector<double> f1coeff, f2coeff, f3coeff, cost_; // coefficient for coefficients matrix
    std::vector<cv::Mat> C_est_, t_est_;    // optimal candidates
    cv::Mat C_est__, t_est__;                // optimal found solution
    double cost__;                            // optimal found solution
};

class EigenvalueDecomposition {
private:

    // Holds the data dimension.
    int n;

    // Stores real/imag part of a complex division.
    double cdivr, cdivi;

    // Pointer to internal memory.
    double *d, *e, *ort;
    double **V, **H;

    // Holds the computed eigenvalues.
    Mat _eigenvalues;

    // Holds the computed eigenvectors.
    Mat _eigenvectors;

    // Allocates memory.
    template<typename _Tp>
    _Tp *alloc_1d(int m) {
        return new _Tp[m];
    }

    // Allocates memory.
    template<typename _Tp>
    _Tp *alloc_1d(int m, _Tp val) {
        _Tp *arr = alloc_1d<_Tp> (m);
        for (int i = 0; i < m; i++)
            arr[i] = val;
        return arr;
    }

    // Allocates memory.
    template<typename _Tp>
    _Tp **alloc_2d(int m, int _n) {
        _Tp **arr = new _Tp*[m];
        for (int i = 0; i < m; i++)
            arr[i] = new _Tp[_n];
        return arr;
    }

    // Allocates memory.
    template<typename _Tp>
    _Tp **alloc_2d(int m, int _n, _Tp val) {
        _Tp **arr = alloc_2d<_Tp> (m, _n);
        for (int i = 0; i < m; i++) {
            for (int j = 0; j < _n; j++) {
                arr[i][j] = val;
            }
        }
        return arr;
    }

    void cdiv(double xr, double xi, double yr, double yi) {
        double r, dv;
        if (std::abs(yr) > std::abs(yi)) {
            r = yi / yr;
            dv = yr + r * yi;
            cdivr = (xr + r * xi) / dv;
            cdivi = (xi - r * xr) / dv;
        } else {
            r = yr / yi;
            dv = yi + r * yr;
            cdivr = (r * xr + xi) / dv;
            cdivi = (r * xi - xr) / dv;
        }
    }

    // Nonsymmetric reduction from Hessenberg to real Schur form.

    void hqr2() {

        //  This is derived from the Algol procedure hqr2,
        //  by Martin and Wilkinson, Handbook for Auto. Comp.,
        //  Vol.ii-Linear Algebra, and the corresponding
        //  Fortran subroutine in EISPACK.

        // Initialize
        int nn = this->n;
        int n1 = nn - 1;
        int low = 0;
        int high = nn - 1;
        double eps = std::pow(2.0, -52.0);
        double exshift = 0.0;
        double p = 0, q = 0, r = 0, s = 0, z = 0, t, w, x, y;

        // Store roots isolated by balanc and compute matrix norm

        double norm = 0.0;
        for (int i = 0; i < nn; i++) {
            if (i < low || i > high) {
                d[i] = H[i][i];
                e[i] = 0.0;
            }
            for (int j = std::max(i - 1, 0); j < nn; j++) {
                norm = norm + std::abs(H[i][j]);
            }
        }

        // Outer loop over eigenvalue index
        int iter = 0;
        while (n1 >= low) {

            // Look for single small sub-diagonal element
            int l = n1;
            while (l > low) {
                s = std::abs(H[l - 1][l - 1]) + std::abs(H[l][l]);
                if (s == 0.0) {
                    s = norm;
                }
                if (std::abs(H[l][l - 1]) < eps * s) {
                    break;
                }
                l--;
            }

            // Check for convergence
            // One root found

            if (l == n1) {
                H[n1][n1] = H[n1][n1] + exshift;
                d[n1] = H[n1][n1];
                e[n1] = 0.0;
                n1--;
                iter = 0;

                // Two roots found

            } else if (l == n1 - 1) {
                w = H[n1][n1 - 1] * H[n1 - 1][n1];
                p = (H[n1 - 1][n1 - 1] - H[n1][n1]) / 2.0;
                q = p * p + w;
                z = std::sqrt(std::abs(q));
                H[n1][n1] = H[n1][n1] + exshift;
                H[n1 - 1][n1 - 1] = H[n1 - 1][n1 - 1] + exshift;
                x = H[n1][n1];

                // Real pair

                if (q >= 0) {
                    if (p >= 0) {
                        z = p + z;
                    } else {
                        z = p - z;
                    }
                    d[n1 - 1] = x + z;
                    d[n1] = d[n1 - 1];
                    if (z != 0.0) {
                        d[n1] = x - w / z;
                    }
                    e[n1 - 1] = 0.0;
                    e[n1] = 0.0;
                    x = H[n1][n1 - 1];
                    s = std::abs(x) + std::abs(z);
                    p = x / s;
                    q = z / s;
                    r = std::sqrt(p * p + q * q);
                    p = p / r;
                    q = q / r;

                    // Row modification

                    for (int j = n1 - 1; j < nn; j++) {
                        z = H[n1 - 1][j];
                        H[n1 - 1][j] = q * z + p * H[n1][j];
                        H[n1][j] = q * H[n1][j] - p * z;
                    }

                    // Column modification

                    for (int i = 0; i <= n1; i++) {
                        z = H[i][n1 - 1];
                        H[i][n1 - 1] = q * z + p * H[i][n1];
                        H[i][n1] = q * H[i][n1] - p * z;
                    }

                    // Accumulate transformations

                    for (int i = low; i <= high; i++) {
                        z = V[i][n1 - 1];
                        V[i][n1 - 1] = q * z + p * V[i][n1];
                        V[i][n1] = q * V[i][n1] - p * z;
                    }

                    // Complex pair

                } else {
                    d[n1 - 1] = x + p;
                    d[n1] = x + p;
                    e[n1 - 1] = z;
                    e[n1] = -z;
                }
                n1 = n1 - 2;
                iter = 0;

                // No convergence yet

            } else {

                // Form shift

                x = H[n1][n1];
                y = 0.0;
                w = 0.0;
                if (l < n1) {
                    y = H[n1 - 1][n1 - 1];
                    w = H[n1][n1 - 1] * H[n1 - 1][n1];
                }

                // Wilkinson's original ad hoc shift

                if (iter == 10) {
                    exshift += x;
                    for (int i = low; i <= n1; i++) {
                        H[i][i] -= x;
                    }
                    s = std::abs(H[n1][n1 - 1]) + std::abs(H[n1 - 1][n1 - 2]);
                    x = y = 0.75 * s;
                    w = -0.4375 * s * s;
                }

                // MATLAB's new ad hoc shift

                if (iter == 30) {
                    s = (y - x) / 2.0;
                    s = s * s + w;
                    if (s > 0) {
                        s = std::sqrt(s);
                        if (y < x) {
                            s = -s;
                        }
                        s = x - w / ((y - x) / 2.0 + s);
                        for (int i = low; i <= n1; i++) {
                            H[i][i] -= s;
                        }
                        exshift += s;
                        x = y = w = 0.964;
                    }
                }

                iter = iter + 1; // (Could check iteration count here.)

                // Look for two consecutive small sub-diagonal elements
                int m = n1 - 2;
                while (m >= l) {
                    z = H[m][m];
                    r = x - z;
                    s = y - z;
                    p = (r * s - w) / H[m + 1][m] + H[m][m + 1];
                    q = H[m + 1][m + 1] - z - r - s;
                    r = H[m + 2][m + 1];
                    s = std::abs(p) + std::abs(q) + std::abs(r);
                    p = p / s;
                    q = q / s;
                    r = r / s;
                    if (m == l) {
                        break;
                    }
                    if (std::abs(H[m][m - 1]) * (std::abs(q) + std::abs(r)) < eps * (std::abs(p)
                                                                                     * (std::abs(H[m - 1][m - 1]) + std::abs(z) + std::abs(
                                                                                                                                           H[m + 1][m + 1])))) {
                        break;
                    }
                    m--;
                }

                for (int i = m + 2; i <= n1; i++) {
                    H[i][i - 2] = 0.0;
                    if (i > m + 2) {
                        H[i][i - 3] = 0.0;
                    }
                }

                // Double QR step involving rows l:n and columns m:n

                for (int k = m; k <= n1 - 1; k++) {
                    bool notlast = (k != n1 - 1);
                    if (k != m) {
                        p = H[k][k - 1];
                        q = H[k + 1][k - 1];
                        r = (notlast ? H[k + 2][k - 1] : 0.0);
                        x = std::abs(p) + std::abs(q) + std::abs(r);
                        if (x != 0.0) {
                            p = p / x;
                            q = q / x;
                            r = r / x;
                        }
                    }
                    if (x == 0.0) {
                        break;
                    }
                    s = std::sqrt(p * p + q * q + r * r);
                    if (p < 0) {
                        s = -s;
                    }
                    if (s != 0) {
                        if (k != m) {
                            H[k][k - 1] = -s * x;
                        } else if (l != m) {
                            H[k][k - 1] = -H[k][k - 1];
                        }
                        p = p + s;
                        x = p / s;
                        y = q / s;
                        z = r / s;
                        q = q / p;
                        r = r / p;

                        // Row modification

                        for (int j = k; j < nn; j++) {
                            p = H[k][j] + q * H[k + 1][j];
                            if (notlast) {
                                p = p + r * H[k + 2][j];
                                H[k + 2][j] = H[k + 2][j] - p * z;
                            }
                            H[k][j] = H[k][j] - p * x;
                            H[k + 1][j] = H[k + 1][j] - p * y;
                        }

                        // Column modification

                        for (int i = 0; i <= std::min(n1, k + 3); i++) {
                            p = x * H[i][k] + y * H[i][k + 1];
                            if (notlast) {
                                p = p + z * H[i][k + 2];
                                H[i][k + 2] = H[i][k + 2] - p * r;
                            }
                            H[i][k] = H[i][k] - p;
                            H[i][k + 1] = H[i][k + 1] - p * q;
                        }

                        // Accumulate transformations

                        for (int i = low; i <= high; i++) {
                            p = x * V[i][k] + y * V[i][k + 1];
                            if (notlast) {
                                p = p + z * V[i][k + 2];
                                V[i][k + 2] = V[i][k + 2] - p * r;
                            }
                            V[i][k] = V[i][k] - p;
                            V[i][k + 1] = V[i][k + 1] - p * q;
                        }
                    } // (s != 0)
                } // k loop
            } // check convergence
        } // while (n1 >= low)

        // Backsubstitute to find vectors of upper triangular form

        if (norm == 0.0) {
            return;
        }

        for (n1 = nn - 1; n1 >= 0; n1--) {
            p = d[n1];
            q = e[n1];

            // Real vector

            if (q == 0) {
                int l = n1;
                H[n1][n1] = 1.0;
                for (int i = n1 - 1; i >= 0; i--) {
                    w = H[i][i] - p;
                    r = 0.0;
                    for (int j = l; j <= n1; j++) {
                        r = r + H[i][j] * H[j][n1];
                    }
                    if (e[i] < 0.0) {
                        z = w;
                        s = r;
                    } else {
                        l = i;
                        if (e[i] == 0.0) {
                            if (w != 0.0) {
                                H[i][n1] = -r / w;
                            } else {
                                H[i][n1] = -r / (eps * norm);
                            }

                            // Solve real equations

                        } else {
                            x = H[i][i + 1];
                            y = H[i + 1][i];
                            q = (d[i] - p) * (d[i] - p) + e[i] * e[i];
                            t = (x * s - z * r) / q;
                            H[i][n1] = t;
                            if (std::abs(x) > std::abs(z)) {
                                H[i + 1][n1] = (-r - w * t) / x;
                            } else {
                                H[i + 1][n1] = (-s - y * t) / z;
                            }
                        }

                        // Overflow control

                        t = std::abs(H[i][n1]);
                        if ((eps * t) * t > 1) {
                            for (int j = i; j <= n1; j++) {
                                H[j][n1] = H[j][n1] / t;
                            }
                        }
                    }
                }
                // Complex vector
            } else if (q < 0) {
                int l = n1 - 1;

                // Last vector component imaginary so matrix is triangular

                if (std::abs(H[n1][n1 - 1]) > std::abs(H[n1 - 1][n1])) {
                    H[n1 - 1][n1 - 1] = q / H[n1][n1 - 1];
                    H[n1 - 1][n1] = -(H[n1][n1] - p) / H[n1][n1 - 1];
                } else {
                    cdiv(0.0, -H[n1 - 1][n1], H[n1 - 1][n1 - 1] - p, q);
                    H[n1 - 1][n1 - 1] = cdivr;
                    H[n1 - 1][n1] = cdivi;
                }
                H[n1][n1 - 1] = 0.0;
                H[n1][n1] = 1.0;
                for (int i = n1 - 2; i >= 0; i--) {
                    double ra, sa;
                    ra = 0.0;
                    sa = 0.0;
                    for (int j = l; j <= n1; j++) {
                        ra = ra + H[i][j] * H[j][n1 - 1];
                        sa = sa + H[i][j] * H[j][n1];
                    }
                    w = H[i][i] - p;

                    if (e[i] < 0.0) {
                        z = w;
                        r = ra;
                        s = sa;
                    } else {
                        l = i;
                        if (e[i] == 0) {
                            cdiv(-ra, -sa, w, q);
                            H[i][n1 - 1] = cdivr;
                            H[i][n1] = cdivi;
                        } else {

                            // Solve complex equations

                            x = H[i][i + 1];
                            y = H[i + 1][i];
                            double vr = (d[i] - p) * (d[i] - p) + e[i] * e[i] - q * q;
                            double vi = (d[i] - p) * 2.0 * q;
                            if (vr == 0.0 && vi == 0.0) {
                                vr = eps * norm * (std::abs(w) + std::abs(q) + std::abs(x)
                                                   + std::abs(y) + std::abs(z));
                            }
                            cdiv(x * r - z * ra + q * sa,
                                 x * s - z * sa - q * ra, vr, vi);
                            H[i][n1 - 1] = cdivr;
                            H[i][n1] = cdivi;
                            if (std::abs(x) > (std::abs(z) + std::abs(q))) {
                                H[i + 1][n1 - 1] = (-ra - w * H[i][n1 - 1] + q
                                                   * H[i][n1]) / x;
                                H[i + 1][n1] = (-sa - w * H[i][n1] - q * H[i][n1
                                                                            - 1]) / x;
                            } else {
                                cdiv(-r - y * H[i][n1 - 1], -s - y * H[i][n1], z,
                                     q);
                                H[i + 1][n1 - 1] = cdivr;
                                H[i + 1][n1] = cdivi;
                            }
                        }

                        // Overflow control

                        t = std::max(std::abs(H[i][n1 - 1]), std::abs(H[i][n1]));
                        if ((eps * t) * t > 1) {
                            for (int j = i; j <= n1; j++) {
                                H[j][n1 - 1] = H[j][n1 - 1] / t;
                                H[j][n1] = H[j][n1] / t;
                            }
                        }
                    }
                }
            }
        }

        // Vectors of isolated roots

        for (int i = 0; i < nn; i++) {
            if (i < low || i > high) {
                for (int j = i; j < nn; j++) {
                    V[i][j] = H[i][j];
                }
            }
        }

        // Back transformation to get eigenvectors of original matrix

        for (int j = nn - 1; j >= low; j--) {
            for (int i = low; i <= high; i++) {
                z = 0.0;
                for (int k = low; k <= std::min(j, high); k++) {
                    z = z + V[i][k] * H[k][j];
                }
                V[i][j] = z;
            }
        }
    }

    // Nonsymmetric reduction to Hessenberg form.
    void orthes() {
        //  This is derived from the Algol procedures orthes and ortran,
        //  by Martin and Wilkinson, Handbook for Auto. Comp.,
        //  Vol.ii-Linear Algebra, and the corresponding
        //  Fortran subroutines in EISPACK.
        int low = 0;
        int high = n - 1;

        for (int m = low + 1; m <= high - 1; m++) {

            // Scale column.

            double scale = 0.0;
            for (int i = m; i <= high; i++) {
                scale = scale + std::abs(H[i][m - 1]);
            }
            if (scale != 0.0) {

                // Compute Householder transformation.

                double h = 0.0;
                for (int i = high; i >= m; i--) {
                    ort[i] = H[i][m - 1] / scale;
                    h += ort[i] * ort[i];
                }
                double g = std::sqrt(h);
                if (ort[m] > 0) {
                    g = -g;
                }
                h = h - ort[m] * g;
                ort[m] = ort[m] - g;

                // Apply Householder similarity transformation
                // H = (I-u*u'/h)*H*(I-u*u')/h)

                for (int j = m; j < n; j++) {
                    double f = 0.0;
                    for (int i = high; i >= m; i--) {
                        f += ort[i] * H[i][j];
                    }
                    f = f / h;
                    for (int i = m; i <= high; i++) {
                        H[i][j] -= f * ort[i];
                    }
                }

                for (int i = 0; i <= high; i++) {
                    double f = 0.0;
                    for (int j = high; j >= m; j--) {
                        f += ort[j] * H[i][j];
                    }
                    f = f / h;
                    for (int j = m; j <= high; j++) {
                        H[i][j] -= f * ort[j];
                    }
                }
                ort[m] = scale * ort[m];
                H[m][m - 1] = scale * g;
            }
        }

        // Accumulate transformations (Algol's ortran).

        for (int i = 0; i < n; i++) {
            for (int j = 0; j < n; j++) {
                V[i][j] = (i == j ? 1.0 : 0.0);
            }
        }

        for (int m = high - 1; m >= low + 1; m--) {
            if (H[m][m - 1] != 0.0) {
                for (int i = m + 1; i <= high; i++) {
                    ort[i] = H[i][m - 1];
                }
                for (int j = m; j <= high; j++) {
                    double g = 0.0;
                    for (int i = m; i <= high; i++) {
                        g += ort[i] * V[i][j];
                    }
                    // Double division avoids possible underflow
                    g = (g / ort[m]) / H[m][m - 1];
                    for (int i = m; i <= high; i++) {
                        V[i][j] += g * ort[i];
                    }
                }
            }
        }
    }

    // Releases all internal working memory.
    void release() {
        // releases the working data
        delete[] d;
        delete[] e;
        delete[] ort;
        for (int i = 0; i < n; i++) {
            delete[] H[i];
            delete[] V[i];
        }
        delete[] H;
        delete[] V;
    }

    // Computes the Eigenvalue Decomposition for a matrix given in H.
    void compute() {
        // Allocate memory for the working data.
        V = alloc_2d<double> (n, n, 0.0);
        d = alloc_1d<double> (n);
        e = alloc_1d<double> (n);
        ort = alloc_1d<double> (n);
        // Reduce to Hessenberg form.
        orthes();
        // Reduce Hessenberg to real Schur form.
        hqr2();
        // Copy eigenvalues to OpenCV Matrix.
        _eigenvalues.create(1, n, CV_64FC1);
        for (int i = 0; i < n; i++) {
            _eigenvalues.at<double> (0, i) = d[i];
        }
        // Copy eigenvectors to OpenCV Matrix.
        _eigenvectors.create(n, n, CV_64FC1);
        for (int i = 0; i < n; i++)
            for (int j = 0; j < n; j++)
                _eigenvectors.at<double> (i, j) = V[i][j];
        // Deallocate the memory by releasing all internal working data.
        release();
    }

public:
    EigenvalueDecomposition()
a  
Kai Westerkamp committed
723
    : n(0) { }
wester committed
724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773

    // Initializes & computes the Eigenvalue Decomposition for a general matrix
    // given in src. This function is a port of the EigenvalueSolver in JAMA,
    // which has been released to public domain by The MathWorks and the
    // National Institute of Standards and Technology (NIST).
    EigenvalueDecomposition(InputArray src) {
        compute(src);
    }

    // This function computes the Eigenvalue Decomposition for a general matrix
    // given in src. This function is a port of the EigenvalueSolver in JAMA,
    // which has been released to public domain by The MathWorks and the
    // National Institute of Standards and Technology (NIST).
    void compute(InputArray src)
    {
        /*if(isSymmetric(src)) {
            // Fall back to OpenCV for a symmetric matrix!
            cv::eigen(src, _eigenvalues, _eigenvectors);
        } else {*/
            Mat tmp;
            // Convert the given input matrix to double. Is there any way to
            // prevent allocating the temporary memory? Only used for copying
            // into working memory and deallocated after.
            src.getMat().convertTo(tmp, CV_64FC1);
            // Get dimension of the matrix.
            this->n = tmp.cols;
            // Allocate the matrix data to work on.
            this->H = alloc_2d<double> (n, n);
            // Now safely copy the data.
            for (int i = 0; i < tmp.rows; i++) {
                for (int j = 0; j < tmp.cols; j++) {
                    this->H[i][j] = tmp.at<double>(i, j);
                }
            }
            // Deallocates the temporary matrix before computing.
            tmp.release();
            // Performs the eigenvalue decomposition of H.
            compute();
       // }
    }

    ~EigenvalueDecomposition() {}

    // Returns the eigenvalues of the Eigenvalue Decomposition.
    Mat eigenvalues() {  return _eigenvalues; }
    // Returns the eigenvectors of the Eigenvalue Decomposition.
    Mat eigenvectors() { return _eigenvectors; }
};

#endif // DLS_H