backward_references_enc.c 66 KB
Newer Older
wester committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800
// Copyright 2012 Google Inc. All Rights Reserved.
//
// Use of this source code is governed by a BSD-style license
// that can be found in the COPYING file in the root of the source
// tree. An additional intellectual property rights grant can be found
// in the file PATENTS. All contributing project authors may
// be found in the AUTHORS file in the root of the source tree.
// -----------------------------------------------------------------------------
//
// Author: Jyrki Alakuijala (jyrki@google.com)
//

#include <assert.h>
#include <math.h>

#include "./backward_references_enc.h"
#include "./histogram_enc.h"
#include "../dsp/lossless.h"
#include "../dsp/lossless_common.h"
#include "../dsp/dsp.h"
#include "../utils/color_cache_utils.h"
#include "../utils/utils.h"

#define VALUES_IN_BYTE 256

#define MIN_BLOCK_SIZE 256  // minimum block size for backward references

#define MAX_ENTROPY    (1e30f)

// 1M window (4M bytes) minus 120 special codes for short distances.
#define WINDOW_SIZE_BITS 20
#define WINDOW_SIZE ((1 << WINDOW_SIZE_BITS) - 120)

// Minimum number of pixels for which it is cheaper to encode a
// distance + length instead of each pixel as a literal.
#define MIN_LENGTH 4
// If you change this, you need MAX_LENGTH_BITS + WINDOW_SIZE_BITS <= 32 as it
// is used in VP8LHashChain.
#define MAX_LENGTH_BITS 12
// We want the max value to be attainable and stored in MAX_LENGTH_BITS bits.
#define MAX_LENGTH ((1 << MAX_LENGTH_BITS) - 1)
#if MAX_LENGTH_BITS + WINDOW_SIZE_BITS > 32
#error "MAX_LENGTH_BITS + WINDOW_SIZE_BITS > 32"
#endif

// -----------------------------------------------------------------------------

static const uint8_t plane_to_code_lut[128] = {
 96,   73,  55,  39,  23,  13,   5,  1,  255, 255, 255, 255, 255, 255, 255, 255,
 101,  78,  58,  42,  26,  16,   8,  2,    0,   3,  9,   17,  27,  43,  59,  79,
 102,  86,  62,  46,  32,  20,  10,  6,    4,   7,  11,  21,  33,  47,  63,  87,
 105,  90,  70,  52,  37,  28,  18,  14,  12,  15,  19,  29,  38,  53,  71,  91,
 110,  99,  82,  66,  48,  35,  30,  24,  22,  25,  31,  36,  49,  67,  83, 100,
 115, 108,  94,  76,  64,  50,  44,  40,  34,  41,  45,  51,  65,  77,  95, 109,
 118, 113, 103,  92,  80,  68,  60,  56,  54,  57,  61,  69,  81,  93, 104, 114,
 119, 116, 111, 106,  97,  88,  84,  74,  72,  75,  85,  89,  98, 107, 112, 117
};

static int DistanceToPlaneCode(int xsize, int dist) {
  const int yoffset = dist / xsize;
  const int xoffset = dist - yoffset * xsize;
  if (xoffset <= 8 && yoffset < 8) {
    return plane_to_code_lut[yoffset * 16 + 8 - xoffset] + 1;
  } else if (xoffset > xsize - 8 && yoffset < 7) {
    return plane_to_code_lut[(yoffset + 1) * 16 + 8 + (xsize - xoffset)] + 1;
  }
  return dist + 120;
}

// Returns the exact index where array1 and array2 are different. For an index
// inferior or equal to best_len_match, the return value just has to be strictly
// inferior to best_len_match. The current behavior is to return 0 if this index
// is best_len_match, and the index itself otherwise.
// If no two elements are the same, it returns max_limit.
static WEBP_INLINE int FindMatchLength(const uint32_t* const array1,
                                       const uint32_t* const array2,
                                       int best_len_match, int max_limit) {
  // Before 'expensive' linear match, check if the two arrays match at the
  // current best length index.
  if (array1[best_len_match] != array2[best_len_match]) return 0;

  return VP8LVectorMismatch(array1, array2, max_limit);
}

// -----------------------------------------------------------------------------
//  VP8LBackwardRefs

struct PixOrCopyBlock {
  PixOrCopyBlock* next_;   // next block (or NULL)
  PixOrCopy* start_;       // data start
  int size_;               // currently used size
};

static void ClearBackwardRefs(VP8LBackwardRefs* const refs) {
  assert(refs != NULL);
  if (refs->tail_ != NULL) {
    *refs->tail_ = refs->free_blocks_;  // recycle all blocks at once
  }
  refs->free_blocks_ = refs->refs_;
  refs->tail_ = &refs->refs_;
  refs->last_block_ = NULL;
  refs->refs_ = NULL;
}

void VP8LBackwardRefsClear(VP8LBackwardRefs* const refs) {
  assert(refs != NULL);
  ClearBackwardRefs(refs);
  while (refs->free_blocks_ != NULL) {
    PixOrCopyBlock* const next = refs->free_blocks_->next_;
    WebPSafeFree(refs->free_blocks_);
    refs->free_blocks_ = next;
  }
}

void VP8LBackwardRefsInit(VP8LBackwardRefs* const refs, int block_size) {
  assert(refs != NULL);
  memset(refs, 0, sizeof(*refs));
  refs->tail_ = &refs->refs_;
  refs->block_size_ =
      (block_size < MIN_BLOCK_SIZE) ? MIN_BLOCK_SIZE : block_size;
}

VP8LRefsCursor VP8LRefsCursorInit(const VP8LBackwardRefs* const refs) {
  VP8LRefsCursor c;
  c.cur_block_ = refs->refs_;
  if (refs->refs_ != NULL) {
    c.cur_pos = c.cur_block_->start_;
    c.last_pos_ = c.cur_pos + c.cur_block_->size_;
  } else {
    c.cur_pos = NULL;
    c.last_pos_ = NULL;
  }
  return c;
}

void VP8LRefsCursorNextBlock(VP8LRefsCursor* const c) {
  PixOrCopyBlock* const b = c->cur_block_->next_;
  c->cur_pos = (b == NULL) ? NULL : b->start_;
  c->last_pos_ = (b == NULL) ? NULL : b->start_ + b->size_;
  c->cur_block_ = b;
}

// Create a new block, either from the free list or allocated
static PixOrCopyBlock* BackwardRefsNewBlock(VP8LBackwardRefs* const refs) {
  PixOrCopyBlock* b = refs->free_blocks_;
  if (b == NULL) {   // allocate new memory chunk
    const size_t total_size =
        sizeof(*b) + refs->block_size_ * sizeof(*b->start_);
    b = (PixOrCopyBlock*)WebPSafeMalloc(1ULL, total_size);
    if (b == NULL) {
      refs->error_ |= 1;
      return NULL;
    }
    b->start_ = (PixOrCopy*)((uint8_t*)b + sizeof(*b));  // not always aligned
  } else {  // recycle from free-list
    refs->free_blocks_ = b->next_;
  }
  *refs->tail_ = b;
  refs->tail_ = &b->next_;
  refs->last_block_ = b;
  b->next_ = NULL;
  b->size_ = 0;
  return b;
}

static WEBP_INLINE void BackwardRefsCursorAdd(VP8LBackwardRefs* const refs,
                                              const PixOrCopy v) {
  PixOrCopyBlock* b = refs->last_block_;
  if (b == NULL || b->size_ == refs->block_size_) {
    b = BackwardRefsNewBlock(refs);
    if (b == NULL) return;   // refs->error_ is set
  }
  b->start_[b->size_++] = v;
}

int VP8LBackwardRefsCopy(const VP8LBackwardRefs* const src,
                         VP8LBackwardRefs* const dst) {
  const PixOrCopyBlock* b = src->refs_;
  ClearBackwardRefs(dst);
  assert(src->block_size_ == dst->block_size_);
  while (b != NULL) {
    PixOrCopyBlock* const new_b = BackwardRefsNewBlock(dst);
    if (new_b == NULL) return 0;   // dst->error_ is set
    memcpy(new_b->start_, b->start_, b->size_ * sizeof(*b->start_));
    new_b->size_ = b->size_;
    b = b->next_;
  }
  return 1;
}

// -----------------------------------------------------------------------------
// Hash chains

int VP8LHashChainInit(VP8LHashChain* const p, int size) {
  assert(p->size_ == 0);
  assert(p->offset_length_ == NULL);
  assert(size > 0);
  p->offset_length_ =
      (uint32_t*)WebPSafeMalloc(size, sizeof(*p->offset_length_));
  if (p->offset_length_ == NULL) return 0;
  p->size_ = size;

  return 1;
}

void VP8LHashChainClear(VP8LHashChain* const p) {
  assert(p != NULL);
  WebPSafeFree(p->offset_length_);

  p->size_ = 0;
  p->offset_length_ = NULL;
}

// -----------------------------------------------------------------------------

#define HASH_MULTIPLIER_HI (0xc6a4a793ULL)
#define HASH_MULTIPLIER_LO (0x5bd1e996ULL)

static WEBP_INLINE uint32_t GetPixPairHash64(const uint32_t* const argb) {
  uint32_t key;
  key  = (argb[1] * HASH_MULTIPLIER_HI) & 0xffffffffu;
  key += (argb[0] * HASH_MULTIPLIER_LO) & 0xffffffffu;
  key = key >> (32 - HASH_BITS);
  return key;
}

// Returns the maximum number of hash chain lookups to do for a
// given compression quality. Return value in range [8, 86].
static int GetMaxItersForQuality(int quality) {
  return 8 + (quality * quality) / 128;
}

static int GetWindowSizeForHashChain(int quality, int xsize) {
  const int max_window_size = (quality > 75) ? WINDOW_SIZE
                            : (quality > 50) ? (xsize << 8)
                            : (quality > 25) ? (xsize << 6)
                            : (xsize << 4);
  assert(xsize > 0);
  return (max_window_size > WINDOW_SIZE) ? WINDOW_SIZE : max_window_size;
}

static WEBP_INLINE int MaxFindCopyLength(int len) {
  return (len < MAX_LENGTH) ? len : MAX_LENGTH;
}

int VP8LHashChainFill(VP8LHashChain* const p, int quality,
                      const uint32_t* const argb, int xsize, int ysize,
                      int low_effort) {
  const int size = xsize * ysize;
  const int iter_max = GetMaxItersForQuality(quality);
  const uint32_t window_size = GetWindowSizeForHashChain(quality, xsize);
  int pos;
  int argb_comp;
  uint32_t base_position;
  int32_t* hash_to_first_index;
  // Temporarily use the p->offset_length_ as a hash chain.
  int32_t* chain = (int32_t*)p->offset_length_;
  assert(size > 0);
  assert(p->size_ != 0);
  assert(p->offset_length_ != NULL);

  if (size <= 2) {
    p->offset_length_[0] = p->offset_length_[size - 1] = 0;
    return 1;
  }

  hash_to_first_index =
      (int32_t*)WebPSafeMalloc(HASH_SIZE, sizeof(*hash_to_first_index));
  if (hash_to_first_index == NULL) return 0;

  // Set the int32_t array to -1.
  memset(hash_to_first_index, 0xff, HASH_SIZE * sizeof(*hash_to_first_index));
  // Fill the chain linking pixels with the same hash.
  argb_comp = (argb[0] == argb[1]);
  for (pos = 0; pos < size - 2;) {
    uint32_t hash_code;
    const int argb_comp_next = (argb[pos + 1] == argb[pos + 2]);
    if (argb_comp && argb_comp_next) {
      // Consecutive pixels with the same color will share the same hash.
      // We therefore use a different hash: the color and its repetition
      // length.
      uint32_t tmp[2];
      uint32_t len = 1;
      tmp[0] = argb[pos];
      // Figure out how far the pixels are the same.
      // The last pixel has a different 64 bit hash, as its next pixel does
      // not have the same color, so we just need to get to the last pixel equal
      // to its follower.
      while (pos + (int)len + 2 < size && argb[pos + len + 2] == argb[pos]) {
        ++len;
      }
      if (len > MAX_LENGTH) {
        // Skip the pixels that match for distance=1 and length>MAX_LENGTH
        // because they are linked to their predecessor and we automatically
        // check that in the main for loop below. Skipping means setting no
        // predecessor in the chain, hence -1.
        memset(chain + pos, 0xff, (len - MAX_LENGTH) * sizeof(*chain));
        pos += len - MAX_LENGTH;
        len = MAX_LENGTH;
      }
      // Process the rest of the hash chain.
      while (len) {
        tmp[1] = len--;
        hash_code = GetPixPairHash64(tmp);
        chain[pos] = hash_to_first_index[hash_code];
        hash_to_first_index[hash_code] = pos++;
      }
      argb_comp = 0;
    } else {
      // Just move one pixel forward.
      hash_code = GetPixPairHash64(argb + pos);
      chain[pos] = hash_to_first_index[hash_code];
      hash_to_first_index[hash_code] = pos++;
      argb_comp = argb_comp_next;
    }
  }
  // Process the penultimate pixel.
  chain[pos] = hash_to_first_index[GetPixPairHash64(argb + pos)];

  WebPSafeFree(hash_to_first_index);

  // Find the best match interval at each pixel, defined by an offset to the
  // pixel and a length. The right-most pixel cannot match anything to the right
  // (hence a best length of 0) and the left-most pixel nothing to the left
  // (hence an offset of 0).
  assert(size > 2);
  p->offset_length_[0] = p->offset_length_[size - 1] = 0;
  for (base_position = size - 2; base_position > 0;) {
    const int max_len = MaxFindCopyLength(size - 1 - base_position);
    const uint32_t* const argb_start = argb + base_position;
    int iter = iter_max;
    int best_length = 0;
    uint32_t best_distance = 0;
    uint32_t best_argb;
    const int min_pos =
        (base_position > window_size) ? base_position - window_size : 0;
    const int length_max = (max_len < 256) ? max_len : 256;
    uint32_t max_base_position;

    pos = chain[base_position];
    if (!low_effort) {
      int curr_length;
      // Heuristic: use the comparison with the above line as an initialization.
      if (base_position >= (uint32_t)xsize) {
        curr_length = FindMatchLength(argb_start - xsize, argb_start,
                                      best_length, max_len);
        if (curr_length > best_length) {
          best_length = curr_length;
          best_distance = xsize;
        }
        --iter;
      }
      // Heuristic: compare to the previous pixel.
      curr_length =
          FindMatchLength(argb_start - 1, argb_start, best_length, max_len);
      if (curr_length > best_length) {
        best_length = curr_length;
        best_distance = 1;
      }
      --iter;
      // Skip the for loop if we already have the maximum.
      if (best_length == MAX_LENGTH) pos = min_pos - 1;
    }
    best_argb = argb_start[best_length];

    for (; pos >= min_pos && --iter; pos = chain[pos]) {
      int curr_length;
      assert(base_position > (uint32_t)pos);

      if (argb[pos + best_length] != best_argb) continue;

      curr_length = VP8LVectorMismatch(argb + pos, argb_start, max_len);
      if (best_length < curr_length) {
        best_length = curr_length;
        best_distance = base_position - pos;
        best_argb = argb_start[best_length];
        // Stop if we have reached a good enough length.
        if (best_length >= length_max) break;
      }
    }
    // We have the best match but in case the two intervals continue matching
    // to the left, we have the best matches for the left-extended pixels.
    max_base_position = base_position;
    while (1) {
      assert(best_length <= MAX_LENGTH);
      assert(best_distance <= WINDOW_SIZE);
      p->offset_length_[base_position] =
          (best_distance << MAX_LENGTH_BITS) | (uint32_t)best_length;
      --base_position;
      // Stop if we don't have a match or if we are out of bounds.
      if (best_distance == 0 || base_position == 0) break;
      // Stop if we cannot extend the matching intervals to the left.
      if (base_position < best_distance ||
          argb[base_position - best_distance] != argb[base_position]) {
        break;
      }
      // Stop if we are matching at its limit because there could be a closer
      // matching interval with the same maximum length. Then again, if the
      // matching interval is as close as possible (best_distance == 1), we will
      // never find anything better so let's continue.
      if (best_length == MAX_LENGTH && best_distance != 1 &&
          base_position + MAX_LENGTH < max_base_position) {
        break;
      }
      if (best_length < MAX_LENGTH) {
        ++best_length;
        max_base_position = base_position;
      }
    }
  }
  return 1;
}

static WEBP_INLINE int HashChainFindOffset(const VP8LHashChain* const p,
                                           const int base_position) {
  return p->offset_length_[base_position] >> MAX_LENGTH_BITS;
}

static WEBP_INLINE int HashChainFindLength(const VP8LHashChain* const p,
                                           const int base_position) {
  return p->offset_length_[base_position] & ((1U << MAX_LENGTH_BITS) - 1);
}

static WEBP_INLINE void HashChainFindCopy(const VP8LHashChain* const p,
                                          int base_position,
                                          int* const offset_ptr,
                                          int* const length_ptr) {
  *offset_ptr = HashChainFindOffset(p, base_position);
  *length_ptr = HashChainFindLength(p, base_position);
}

static WEBP_INLINE void AddSingleLiteral(uint32_t pixel, int use_color_cache,
                                         VP8LColorCache* const hashers,
                                         VP8LBackwardRefs* const refs) {
  PixOrCopy v;
  if (use_color_cache) {
    const uint32_t key = VP8LColorCacheGetIndex(hashers, pixel);
    if (VP8LColorCacheLookup(hashers, key) == pixel) {
      v = PixOrCopyCreateCacheIdx(key);
    } else {
      v = PixOrCopyCreateLiteral(pixel);
      VP8LColorCacheSet(hashers, key, pixel);
    }
  } else {
    v = PixOrCopyCreateLiteral(pixel);
  }
  BackwardRefsCursorAdd(refs, v);
}

static int BackwardReferencesRle(int xsize, int ysize,
                                 const uint32_t* const argb,
                                 int cache_bits, VP8LBackwardRefs* const refs) {
  const int pix_count = xsize * ysize;
  int i, k;
  const int use_color_cache = (cache_bits > 0);
  VP8LColorCache hashers;

  if (use_color_cache && !VP8LColorCacheInit(&hashers, cache_bits)) {
    return 0;
  }
  ClearBackwardRefs(refs);
  // Add first pixel as literal.
  AddSingleLiteral(argb[0], use_color_cache, &hashers, refs);
  i = 1;
  while (i < pix_count) {
    const int max_len = MaxFindCopyLength(pix_count - i);
    const int rle_len = FindMatchLength(argb + i, argb + i - 1, 0, max_len);
    const int prev_row_len = (i < xsize) ? 0 :
        FindMatchLength(argb + i, argb + i - xsize, 0, max_len);
    if (rle_len >= prev_row_len && rle_len >= MIN_LENGTH) {
      BackwardRefsCursorAdd(refs, PixOrCopyCreateCopy(1, rle_len));
      // We don't need to update the color cache here since it is always the
      // same pixel being copied, and that does not change the color cache
      // state.
      i += rle_len;
    } else if (prev_row_len >= MIN_LENGTH) {
      BackwardRefsCursorAdd(refs, PixOrCopyCreateCopy(xsize, prev_row_len));
      if (use_color_cache) {
        for (k = 0; k < prev_row_len; ++k) {
          VP8LColorCacheInsert(&hashers, argb[i + k]);
        }
      }
      i += prev_row_len;
    } else {
      AddSingleLiteral(argb[i], use_color_cache, &hashers, refs);
      i++;
    }
  }
  if (use_color_cache) VP8LColorCacheClear(&hashers);
  return !refs->error_;
}

static int BackwardReferencesLz77(int xsize, int ysize,
                                  const uint32_t* const argb, int cache_bits,
                                  const VP8LHashChain* const hash_chain,
                                  VP8LBackwardRefs* const refs) {
  int i;
  int i_last_check = -1;
  int ok = 0;
  int cc_init = 0;
  const int use_color_cache = (cache_bits > 0);
  const int pix_count = xsize * ysize;
  VP8LColorCache hashers;

  if (use_color_cache) {
    cc_init = VP8LColorCacheInit(&hashers, cache_bits);
    if (!cc_init) goto Error;
  }
  ClearBackwardRefs(refs);
  for (i = 0; i < pix_count;) {
    // Alternative#1: Code the pixels starting at 'i' using backward reference.
    int offset = 0;
    int len = 0;
    int j;
    HashChainFindCopy(hash_chain, i, &offset, &len);
    if (len >= MIN_LENGTH) {
      const int len_ini = len;
      int max_reach = 0;
      assert(i + len < pix_count);
      // Only start from what we have not checked already.
      i_last_check = (i > i_last_check) ? i : i_last_check;
      // We know the best match for the current pixel but we try to find the
      // best matches for the current pixel AND the next one combined.
      // The naive method would use the intervals:
      // [i,i+len) + [i+len, length of best match at i+len)
      // while we check if we can use:
      // [i,j) (where j<=i+len) + [j, length of best match at j)
      for (j = i_last_check + 1; j <= i + len_ini; ++j) {
        const int len_j = HashChainFindLength(hash_chain, j);
        const int reach =
            j + (len_j >= MIN_LENGTH ? len_j : 1);  // 1 for single literal.
        if (reach > max_reach) {
          len = j - i;
          max_reach = reach;
        }
      }
    } else {
      len = 1;
    }
    // Go with literal or backward reference.
    assert(len > 0);
    if (len == 1) {
      AddSingleLiteral(argb[i], use_color_cache, &hashers, refs);
    } else {
      BackwardRefsCursorAdd(refs, PixOrCopyCreateCopy(offset, len));
      if (use_color_cache) {
        for (j = i; j < i + len; ++j) VP8LColorCacheInsert(&hashers, argb[j]);
      }
    }
    i += len;
  }

  ok = !refs->error_;
 Error:
  if (cc_init) VP8LColorCacheClear(&hashers);
  return ok;
}

// -----------------------------------------------------------------------------

typedef struct {
  double alpha_[VALUES_IN_BYTE];
  double red_[VALUES_IN_BYTE];
  double blue_[VALUES_IN_BYTE];
  double distance_[NUM_DISTANCE_CODES];
  double* literal_;
} CostModel;

static int BackwardReferencesTraceBackwards(
    int xsize, int ysize, const uint32_t* const argb, int quality,
    int cache_bits, const VP8LHashChain* const hash_chain,
    VP8LBackwardRefs* const refs);

static void ConvertPopulationCountTableToBitEstimates(
    int num_symbols, const uint32_t population_counts[], double output[]) {
  uint32_t sum = 0;
  int nonzeros = 0;
  int i;
  for (i = 0; i < num_symbols; ++i) {
    sum += population_counts[i];
    if (population_counts[i] > 0) {
      ++nonzeros;
    }
  }
  if (nonzeros <= 1) {
    memset(output, 0, num_symbols * sizeof(*output));
  } else {
    const double logsum = VP8LFastLog2(sum);
    for (i = 0; i < num_symbols; ++i) {
      output[i] = logsum - VP8LFastLog2(population_counts[i]);
    }
  }
}

static int CostModelBuild(CostModel* const m, int cache_bits,
                          VP8LBackwardRefs* const refs) {
  int ok = 0;
  VP8LHistogram* const histo = VP8LAllocateHistogram(cache_bits);
  if (histo == NULL) goto Error;

  VP8LHistogramCreate(histo, refs, cache_bits);

  ConvertPopulationCountTableToBitEstimates(
      VP8LHistogramNumCodes(histo->palette_code_bits_),
      histo->literal_, m->literal_);
  ConvertPopulationCountTableToBitEstimates(
      VALUES_IN_BYTE, histo->red_, m->red_);
  ConvertPopulationCountTableToBitEstimates(
      VALUES_IN_BYTE, histo->blue_, m->blue_);
  ConvertPopulationCountTableToBitEstimates(
      VALUES_IN_BYTE, histo->alpha_, m->alpha_);
  ConvertPopulationCountTableToBitEstimates(
      NUM_DISTANCE_CODES, histo->distance_, m->distance_);
  ok = 1;

 Error:
  VP8LFreeHistogram(histo);
  return ok;
}

static WEBP_INLINE double GetLiteralCost(const CostModel* const m, uint32_t v) {
  return m->alpha_[v >> 24] +
         m->red_[(v >> 16) & 0xff] +
         m->literal_[(v >> 8) & 0xff] +
         m->blue_[v & 0xff];
}

static WEBP_INLINE double GetCacheCost(const CostModel* const m, uint32_t idx) {
  const int literal_idx = VALUES_IN_BYTE + NUM_LENGTH_CODES + idx;
  return m->literal_[literal_idx];
}

static WEBP_INLINE double GetLengthCost(const CostModel* const m,
                                        uint32_t length) {
  int code, extra_bits;
  VP8LPrefixEncodeBits(length, &code, &extra_bits);
  return m->literal_[VALUES_IN_BYTE + code] + extra_bits;
}

static WEBP_INLINE double GetDistanceCost(const CostModel* const m,
                                          uint32_t distance) {
  int code, extra_bits;
  VP8LPrefixEncodeBits(distance, &code, &extra_bits);
  return m->distance_[code] + extra_bits;
}

static void AddSingleLiteralWithCostModel(const uint32_t* const argb,
                                          VP8LColorCache* const hashers,
                                          const CostModel* const cost_model,
                                          int idx, int use_color_cache,
                                          double prev_cost, float* const cost,
                                          uint16_t* const dist_array) {
  double cost_val = prev_cost;
  const uint32_t color = argb[0];
  const int ix = use_color_cache ? VP8LColorCacheContains(hashers, color) : -1;
  if (ix >= 0) {
    // use_color_cache is true and hashers contains color
    const double mul0 = 0.68;
    cost_val += GetCacheCost(cost_model, ix) * mul0;
  } else {
    const double mul1 = 0.82;
    if (use_color_cache) VP8LColorCacheInsert(hashers, color);
    cost_val += GetLiteralCost(cost_model, color) * mul1;
  }
  if (cost[idx] > cost_val) {
    cost[idx] = (float)cost_val;
    dist_array[idx] = 1;  // only one is inserted.
  }
}

// -----------------------------------------------------------------------------
// CostManager and interval handling

// Empirical value to avoid high memory consumption but good for performance.
#define COST_CACHE_INTERVAL_SIZE_MAX 100

// To perform backward reference every pixel at index index_ is considered and
// the cost for the MAX_LENGTH following pixels computed. Those following pixels
// at index index_ + k (k from 0 to MAX_LENGTH) have a cost of:
//     distance_cost_ at index_ + GetLengthCost(cost_model, k)
//            (named cost)            (named cached cost)
// and the minimum value is kept. GetLengthCost(cost_model, k) is cached in an
// array of size MAX_LENGTH.
// Instead of performing MAX_LENGTH comparisons per pixel, we keep track of the
// minimal values using intervals, for which lower_ and upper_ bounds are kept.
// An interval is defined by the index_ of the pixel that generated it and
// is only useful in a range of indices from start_ to end_ (exclusive), i.e.
// it contains the minimum value for pixels between start_ and end_.
// Intervals are stored in a linked list and ordered by start_. When a new
// interval has a better minimum, old intervals are split or removed.
typedef struct CostInterval CostInterval;
struct CostInterval {
  double lower_;
  double upper_;
  int start_;
  int end_;
  double distance_cost_;
  int index_;
  CostInterval* previous_;
  CostInterval* next_;
};

// The GetLengthCost(cost_model, k) part of the costs is also bounded for
// efficiency in a set of intervals of a different type.
// If those intervals are small enough, they are not used for comparison and
// written into the costs right away.
typedef struct {
  double lower_;  // Lower bound of the interval.
  double upper_;  // Upper bound of the interval.
  int start_;
  int end_;       // Exclusive.
  int do_write_;  // If !=0, the interval is saved to cost instead of being kept
                  // for comparison.
} CostCacheInterval;

// This structure is in charge of managing intervals and costs.
// It caches the different CostCacheInterval, caches the different
// GetLengthCost(cost_model, k) in cost_cache_ and the CostInterval's (whose
// count_ is limited by COST_CACHE_INTERVAL_SIZE_MAX).
#define COST_MANAGER_MAX_FREE_LIST 10
typedef struct {
  CostInterval* head_;
  int count_;  // The number of stored intervals.
  CostCacheInterval* cache_intervals_;
  size_t cache_intervals_size_;
  double cost_cache_[MAX_LENGTH];  // Contains the GetLengthCost(cost_model, k).
  double min_cost_cache_;          // The minimum value in cost_cache_[1:].
  double max_cost_cache_;          // The maximum value in cost_cache_[1:].
  float* costs_;
  uint16_t* dist_array_;
  // Most of the time, we only need few intervals -> use a free-list, to avoid
  // fragmentation with small allocs in most common cases.
  CostInterval intervals_[COST_MANAGER_MAX_FREE_LIST];
  CostInterval* free_intervals_;
  // These are regularly malloc'd remains. This list can't grow larger than than
  // size COST_CACHE_INTERVAL_SIZE_MAX - COST_MANAGER_MAX_FREE_LIST, note.
  CostInterval* recycled_intervals_;
  // Buffer used in BackwardReferencesHashChainDistanceOnly to store the ends
  // of the intervals that can have impacted the cost at a pixel.
  int* interval_ends_;
  int interval_ends_size_;
} CostManager;

static int IsCostCacheIntervalWritable(int start, int end) {
  // 100 is the length for which we consider an interval for comparison, and not
  // for writing.
  // The first intervals are very small and go in increasing size. This constant
  // helps merging them into one big interval (up to index 150/200 usually from
  // which intervals start getting much bigger).
  // This value is empirical.
  return (end - start + 1 < 100);
}

static void CostIntervalAddToFreeList(CostManager* const manager,
                                      CostInterval* const interval) {
  interval->next_ = manager->free_intervals_;
  manager->free_intervals_ = interval;
}

static int CostIntervalIsInFreeList(const CostManager* const manager,
                                    const CostInterval* const interval) {
  return (interval >= &manager->intervals_[0] &&
          interval <= &manager->intervals_[COST_MANAGER_MAX_FREE_LIST - 1]);
}

static void CostManagerInitFreeList(CostManager* const manager) {
  int i;
  manager->free_intervals_ = NULL;
  for (i = 0; i < COST_MANAGER_MAX_FREE_LIST; ++i) {
    CostIntervalAddToFreeList(manager, &manager->intervals_[i]);
  }
}

static void DeleteIntervalList(CostManager* const manager,
                               const CostInterval* interval) {
  while (interval != NULL) {
    const CostInterval* const next = interval->next_;
    if (!CostIntervalIsInFreeList(manager, interval)) {
      WebPSafeFree((void*)interval);
    }  // else: do nothing
    interval = next;
  }
}

static void CostManagerClear(CostManager* const manager) {
  if (manager == NULL) return;

  WebPSafeFree(manager->costs_);
  WebPSafeFree(manager->cache_intervals_);
  WebPSafeFree(manager->interval_ends_);

  // Clear the interval lists.
  DeleteIntervalList(manager, manager->head_);
  manager->head_ = NULL;
  DeleteIntervalList(manager, manager->recycled_intervals_);
  manager->recycled_intervals_ = NULL;

  // Reset pointers, count_ and cache_intervals_size_.
  memset(manager, 0, sizeof(*manager));
  CostManagerInitFreeList(manager);
}

static int CostManagerInit(CostManager* const manager,
                           uint16_t* const dist_array, int pix_count,
                           const CostModel* const cost_model) {
  int i;
  const int cost_cache_size = (pix_count > MAX_LENGTH) ? MAX_LENGTH : pix_count;
  // This constant is tied to the cost_model we use.
  // Empirically, differences between intervals is usually of more than 1.
  const double min_cost_diff = 0.1;

  manager->costs_ = NULL;
  manager->cache_intervals_ = NULL;
  manager->interval_ends_ = NULL;
  manager->head_ = NULL;
  manager->recycled_intervals_ = NULL;
  manager->count_ = 0;
  manager->dist_array_ = dist_array;
  CostManagerInitFreeList(manager);

  // Fill in the cost_cache_.
  manager->cache_intervals_size_ = 1;
  manager->cost_cache_[0] = 0;
  for (i = 1; i < cost_cache_size; ++i) {
    manager->cost_cache_[i] = GetLengthCost(cost_model, i);
    // Get an approximation of the number of bound intervals.
    if (fabs(manager->cost_cache_[i] - manager->cost_cache_[i - 1]) >
        min_cost_diff) {
      ++manager->cache_intervals_size_;
    }
    // Compute the minimum of cost_cache_.
    if (i == 1) {
      manager->min_cost_cache_ = manager->cost_cache_[1];
      manager->max_cost_cache_ = manager->cost_cache_[1];
    } else if (manager->cost_cache_[i] < manager->min_cost_cache_) {
      manager->min_cost_cache_ = manager->cost_cache_[i];
    } else if (manager->cost_cache_[i] > manager->max_cost_cache_) {
      manager->max_cost_cache_ = manager->cost_cache_[i];
    }
  }

  // With the current cost models, we have 15 intervals, so we are safe by
  // setting a maximum of COST_CACHE_INTERVAL_SIZE_MAX.
  if (manager->cache_intervals_size_ > COST_CACHE_INTERVAL_SIZE_MAX) {
    manager->cache_intervals_size_ = COST_CACHE_INTERVAL_SIZE_MAX;
  }
  manager->cache_intervals_ = (CostCacheInterval*)WebPSafeMalloc(
      manager->cache_intervals_size_, sizeof(*manager->cache_intervals_));
  if (manager->cache_intervals_ == NULL) {
    CostManagerClear(manager);
    return 0;
  }

  // Fill in the cache_intervals_.
  {
    double cost_prev = -1e38f;  // unprobably low initial value
    CostCacheInterval* prev = NULL;
    CostCacheInterval* cur = manager->cache_intervals_;
    const CostCacheInterval* const end =
        manager->cache_intervals_ + manager->cache_intervals_size_;

    // Consecutive values in cost_cache_ are compared and if a big enough
    // difference is found, a new interval is created and bounded.
    for (i = 0; i < cost_cache_size; ++i) {
      const double cost_val = manager->cost_cache_[i];
      if (i == 0 ||
          (fabs(cost_val - cost_prev) > min_cost_diff && cur + 1 < end)) {
        if (i > 1) {
          const int is_writable =
              IsCostCacheIntervalWritable(cur->start_, cur->end_);
          // Merge with the previous interval if both are writable.
          if (is_writable && cur != manager->cache_intervals_ &&
              prev->do_write_) {
            // Update the previous interval.
            prev->end_ = cur->end_;
            if (cur->lower_ < prev->lower_) {
              prev->lower_ = cur->lower_;
            } else if (cur->upper_ > prev->upper_) {
              prev->upper_ = cur->upper_;
            }
          } else {
            cur->do_write_ = is_writable;
            prev = cur;
            ++cur;
          }
        }
        // Initialize an interval.
        cur->start_ = i;
        cur->do_write_ = 0;
        cur->lower_ = cost_val;
        cur->upper_ = cost_val;
      } else {
        // Update the current interval bounds.
        if (cost_val < cur->lower_) {
          cur->lower_ = cost_val;
        } else if (cost_val > cur->upper_) {
          cur->upper_ = cost_val;
        }
      }
      cur->end_ = i + 1;
      cost_prev = cost_val;
    }
    manager->cache_intervals_size_ = cur + 1 - manager->cache_intervals_;
  }

  manager->costs_ = (float*)WebPSafeMalloc(pix_count, sizeof(*manager->costs_));
  if (manager->costs_ == NULL) {
    CostManagerClear(manager);
    return 0;
  }
  // Set the initial costs_ high for every pixel as we will keep the minimum.
  for (i = 0; i < pix_count; ++i) manager->costs_[i] = 1e38f;

  // The cost at pixel is influenced by the cost intervals from previous pixels.
  // Let us take the specific case where the offset is the same (which actually
  // happens a lot in case of uniform regions).
  // pixel i contributes to j>i a cost of: offset cost + cost_cache_[j-i]
  // pixel i+1 contributes to j>i a cost of: 2*offset cost + cost_cache_[j-i-1]
  // pixel i+2 contributes to j>i a cost of: 3*offset cost + cost_cache_[j-i-2]
  // and so on.
  // A pixel i influences the following length(j) < MAX_LENGTH pixels. What is
  // the value of j such that pixel i + j cannot influence any of those pixels?
  // This value is such that:
  //               max of cost_cache_ < j*offset cost + min of cost_cache_
  // (pixel i + j 's cost cannot beat the worst cost given by pixel i).
  // This value will be used to optimize the cost computation in
  // BackwardReferencesHashChainDistanceOnly.
  {
    // The offset cost is computed in GetDistanceCost and has a minimum value of
    // the minimum in cost_model->distance_. The case where the offset cost is 0
    // will be dealt with differently later so we are only interested in the
    // minimum non-zero offset cost.
    double offset_cost_min = 0.;
    int size;
    for (i = 0; i < NUM_DISTANCE_CODES; ++i) {
      if (cost_model->distance_[i] != 0) {
        if (offset_cost_min == 0.) {
          offset_cost_min = cost_model->distance_[i];
        } else if (cost_model->distance_[i] < offset_cost_min) {
          offset_cost_min = cost_model->distance_[i];
        }
      }
    }
    // In case all the cost_model->distance_ is 0, the next non-zero cost we
    // can have is from the extra bit in GetDistanceCost, hence 1.
    if (offset_cost_min < 1.) offset_cost_min = 1.;

    size = 1 + (int)ceil((manager->max_cost_cache_ - manager->min_cost_cache_) /
                         offset_cost_min);
    // Empirically, we usually end up with a value below 100.
    if (size > MAX_LENGTH) size = MAX_LENGTH;

    manager->interval_ends_ =
        (int*)WebPSafeMalloc(size, sizeof(*manager->interval_ends_));
    if (manager->interval_ends_ == NULL) {
      CostManagerClear(manager);
      return 0;
    }
    manager->interval_ends_size_ = size;
  }

  return 1;
}

// Given the distance_cost for pixel 'index', update the cost at pixel 'i' if it
// is smaller than the previously computed value.
static WEBP_INLINE void UpdateCost(CostManager* const manager, int i, int index,
                                   double distance_cost) {
  int k = i - index;
  double cost_tmp;
  assert(k >= 0 && k < MAX_LENGTH);
  cost_tmp = distance_cost + manager->cost_cache_[k];

  if (manager->costs_[i] > cost_tmp) {
    manager->costs_[i] = (float)cost_tmp;
    manager->dist_array_[i] = k + 1;
  }
}

// Given the distance_cost for pixel 'index', update the cost for all the pixels
// between 'start' and 'end' excluded.
static WEBP_INLINE void UpdateCostPerInterval(CostManager* const manager,
                                              int start, int end, int index,
                                              double distance_cost) {
  int i;
  for (i = start; i < end; ++i) UpdateCost(manager, i, index, distance_cost);
}

// Given two intervals, make 'prev' be the previous one of 'next' in 'manager'.
static WEBP_INLINE void ConnectIntervals(CostManager* const manager,
                                         CostInterval* const prev,
                                         CostInterval* const next) {
  if (prev != NULL) {
    prev->next_ = next;
  } else {
    manager->head_ = next;
  }

  if (next != NULL) next->previous_ = prev;
}

// Pop an interval in the manager.
static WEBP_INLINE void PopInterval(CostManager* const manager,
                                    CostInterval* const interval) {
  CostInterval* const next = interval->next_;

  if (interval == NULL) return;

  ConnectIntervals(manager, interval->previous_, next);
  if (CostIntervalIsInFreeList(manager, interval)) {
    CostIntervalAddToFreeList(manager, interval);
  } else {  // recycle regularly malloc'd intervals too
    interval->next_ = manager->recycled_intervals_;
    manager->recycled_intervals_ = interval;
  }
  --manager->count_;
  assert(manager->count_ >= 0);
}

// Update the cost at index i by going over all the stored intervals that
// overlap with i.
static WEBP_INLINE void UpdateCostPerIndex(CostManager* const manager, int i) {
  CostInterval* current = manager->head_;

  while (current != NULL && current->start_ <= i) {
    if (current->end_ <= i) {
      // We have an outdated interval, remove it.
      CostInterval* next = current->next_;
      PopInterval(manager, current);
      current = next;
    } else {
      UpdateCost(manager, i, current->index_, current->distance_cost_);
      current = current->next_;
    }
  }
}

// Given a current orphan interval and its previous interval, before
// it was orphaned (which can be NULL), set it at the right place in the list
// of intervals using the start_ ordering and the previous interval as a hint.
static WEBP_INLINE void PositionOrphanInterval(CostManager* const manager,
                                               CostInterval* const current,
                                               CostInterval* previous) {
  assert(current != NULL);

  if (previous == NULL) previous = manager->head_;
  while (previous != NULL && current->start_ < previous->start_) {
    previous = previous->previous_;
  }
  while (previous != NULL && previous->next_ != NULL &&
         previous->next_->start_ < current->start_) {
    previous = previous->next_;
  }

  if (previous != NULL) {
    ConnectIntervals(manager, current, previous->next_);
  } else {
    ConnectIntervals(manager, current, manager->head_);
  }
  ConnectIntervals(manager, previous, current);
}

// Insert an interval in the list contained in the manager by starting at
// interval_in as a hint. The intervals are sorted by start_ value.
static WEBP_INLINE void InsertInterval(CostManager* const manager,
                                       CostInterval* const interval_in,
                                       double distance_cost, double lower,
                                       double upper, int index, int start,
                                       int end) {
  CostInterval* interval_new;

  if (IsCostCacheIntervalWritable(start, end) ||
      manager->count_ >= COST_CACHE_INTERVAL_SIZE_MAX) {
    // Write down the interval if it is too small.
    UpdateCostPerInterval(manager, start, end, index, distance_cost);
    return;
  }
  if (manager->free_intervals_ != NULL) {
    interval_new = manager->free_intervals_;
    manager->free_intervals_ = interval_new->next_;
  } else if (manager->recycled_intervals_ != NULL) {
    interval_new = manager->recycled_intervals_;
    manager->recycled_intervals_ = interval_new->next_;
  } else {   // malloc for good
    interval_new = (CostInterval*)WebPSafeMalloc(1, sizeof(*interval_new));
    if (interval_new == NULL) {
      // Write down the interval if we cannot create it.
      UpdateCostPerInterval(manager, start, end, index, distance_cost);
      return;
    }
  }

  interval_new->distance_cost_ = distance_cost;
  interval_new->lower_ = lower;
  interval_new->upper_ = upper;
  interval_new->index_ = index;
  interval_new->start_ = start;
  interval_new->end_ = end;
  PositionOrphanInterval(manager, interval_new, interval_in);

  ++manager->count_;
}

// When an interval has its start_ or end_ modified, it needs to be
// repositioned in the linked list.
static WEBP_INLINE void RepositionInterval(CostManager* const manager,
                                           CostInterval* const interval) {
  if (IsCostCacheIntervalWritable(interval->start_, interval->end_)) {
    // Maybe interval has been resized and is small enough to be removed.
    UpdateCostPerInterval(manager, interval->start_, interval->end_,
                          interval->index_, interval->distance_cost_);
    PopInterval(manager, interval);
    return;
  }

  // Early exit if interval is at the right spot.
  if ((interval->previous_ == NULL ||
       interval->previous_->start_ <= interval->start_) &&
      (interval->next_ == NULL ||
       interval->start_ <= interval->next_->start_)) {
    return;
  }

  ConnectIntervals(manager, interval->previous_, interval->next_);
  PositionOrphanInterval(manager, interval, interval->previous_);
}

// Given a new cost interval defined by its start at index, its last value and
// distance_cost, add its contributions to the previous intervals and costs.
// If handling the interval or one of its subintervals becomes to heavy, its
// contribution is added to the costs right away.
static WEBP_INLINE void PushInterval(CostManager* const manager,
                                     double distance_cost, int index,
                                     int last) {
  size_t i;
  CostInterval* interval = manager->head_;
  CostInterval* interval_next;
  const CostCacheInterval* const cost_cache_intervals =
      manager->cache_intervals_;

  for (i = 0; i < manager->cache_intervals_size_ &&
              cost_cache_intervals[i].start_ < last;
       ++i) {
    // Define the intersection of the ith interval with the new one.
    int start = index + cost_cache_intervals[i].start_;
    const int end = index + (cost_cache_intervals[i].end_ > last
                                 ? last
                                 : cost_cache_intervals[i].end_);
    const double lower_in = cost_cache_intervals[i].lower_;
    const double upper_in = cost_cache_intervals[i].upper_;
    const double lower_full_in = distance_cost + lower_in;
    const double upper_full_in = distance_cost + upper_in;

    if (cost_cache_intervals[i].do_write_) {
      UpdateCostPerInterval(manager, start, end, index, distance_cost);
      continue;
    }

    for (; interval != NULL && interval->start_ < end && start < end;
         interval = interval_next) {
      const double lower_full_interval =
          interval->distance_cost_ + interval->lower_;
      const double upper_full_interval =
          interval->distance_cost_ + interval->upper_;

      interval_next = interval->next_;

      // Make sure we have some overlap
      if (start >= interval->end_) continue;

      if (lower_full_in >= upper_full_interval) {
        // When intervals are represented, the lower, the better.
        // [**********************************************************]
        // start                                                    end
        //                   [----------------------------------]
        //                   interval->start_       interval->end_
        // If we are worse than what we already have, add whatever we have so
        // far up to interval.
        const int start_new = interval->end_;
        InsertInterval(manager, interval, distance_cost, lower_in, upper_in,
                       index, start, interval->start_);
        start = start_new;
        continue;
      }

      // We know the two intervals intersect.
      if (upper_full_in >= lower_full_interval) {
        // There is no clear cut on which is best, so let's keep both.
        // [*********[*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*]***********]
        // start     interval->start_     interval->end_         end
        // OR
        // [*********[*-*-*-*-*-*-*-*-*-*-*-]----------------------]
        // start     interval->start_     end          interval->end_
        const int end_new = (interval->end_ <= end) ? interval->end_ : end;
        InsertInterval(manager, interval, distance_cost, lower_in, upper_in,
                       index, start, end_new);
        start = end_new;
      } else if (start <= interval->start_ && interval->end_ <= end) {
        //                   [----------------------------------]
        //                   interval->start_       interval->end_
        // [**************************************************************]
        // start                                                        end
        // We can safely remove the old interval as it is fully included.
        PopInterval(manager, interval);
      } else {
        if (interval->start_ <= start && end <= interval->end_) {
          // [--------------------------------------------------------------]
          // interval->start_                                  interval->end_
          //                     [*****************************]
          //                     start                       end
          // We have to split the old interval as it fully contains the new one.
          const int end_original = interval->end_;
          interval->end_ = start;
          InsertInterval(manager, interval, interval->distance_cost_,
                         interval->lower_, interval->upper_, interval->index_,
                         end, end_original);
        } else if (interval->start_ < start) {
          // [------------------------------------]
          // interval->start_        interval->end_
          //                     [*****************************]
          //                     start                       end
          interval->end_ = start;
        } else {
          //              [------------------------------------]
          //              interval->start_        interval->end_
          // [*****************************]
          // start                       end
          interval->start_ = end;
        }

        // The interval has been modified, we need to reposition it or write it.
        RepositionInterval(manager, interval);
      }
    }
    // Insert the remaining interval from start to end.
    InsertInterval(manager, interval, distance_cost, lower_in, upper_in, index,
                   start, end);
  }
}

static int BackwardReferencesHashChainDistanceOnly(
    int xsize, int ysize, const uint32_t* const argb, int quality,
    int cache_bits, const VP8LHashChain* const hash_chain,
    VP8LBackwardRefs* const refs, uint16_t* const dist_array) {
  int i;
  int ok = 0;
  int cc_init = 0;
  const int pix_count = xsize * ysize;
  const int use_color_cache = (cache_bits > 0);
  const size_t literal_array_size = sizeof(double) *
      (NUM_LITERAL_CODES + NUM_LENGTH_CODES +
       ((cache_bits > 0) ? (1 << cache_bits) : 0));
  const size_t cost_model_size = sizeof(CostModel) + literal_array_size;
  CostModel* const cost_model =
      (CostModel*)WebPSafeCalloc(1ULL, cost_model_size);
  VP8LColorCache hashers;
  const int skip_length = 32 + quality;
  const int skip_min_distance_code = 2;
  CostManager* cost_manager =
      (CostManager*)WebPSafeMalloc(1ULL, sizeof(*cost_manager));

  if (cost_model == NULL || cost_manager == NULL) goto Error;

  cost_model->literal_ = (double*)(cost_model + 1);
  if (use_color_cache) {
    cc_init = VP8LColorCacheInit(&hashers, cache_bits);
    if (!cc_init) goto Error;
  }

  if (!CostModelBuild(cost_model, cache_bits, refs)) {
    goto Error;
  }

  if (!CostManagerInit(cost_manager, dist_array, pix_count, cost_model)) {
    goto Error;
  }

  // We loop one pixel at a time, but store all currently best points to
  // non-processed locations from this point.
  dist_array[0] = 0;
  // Add first pixel as literal.
  AddSingleLiteralWithCostModel(argb + 0, &hashers, cost_model, 0,
                                use_color_cache, 0.0, cost_manager->costs_,
                                dist_array);

  for (i = 1; i < pix_count - 1; ++i) {
    int offset = 0, len = 0;
    double prev_cost = cost_manager->costs_[i - 1];
    HashChainFindCopy(hash_chain, i, &offset, &len);
    if (len >= 2) {
      // If we are dealing with a non-literal.
      const int code = DistanceToPlaneCode(xsize, offset);
      const double offset_cost = GetDistanceCost(cost_model, code);
      const int first_i = i;
      int j_max = 0, interval_ends_index = 0;
      const int is_offset_zero = (offset_cost == 0.);

      if (!is_offset_zero) {
        j_max = (int)ceil(
            (cost_manager->max_cost_cache_ - cost_manager->min_cost_cache_) /
            offset_cost);
        if (j_max < 1) {
          j_max = 1;
        } else if (j_max > cost_manager->interval_ends_size_ - 1) {
          // This could only happen in the case of MAX_LENGTH.
          j_max = cost_manager->interval_ends_size_ - 1;
        }
      }  // else j_max is unused anyway.

      // Instead of considering all contributions from a pixel i by calling:
      //         PushInterval(cost_manager, prev_cost + offset_cost, i, len);
      // we optimize these contributions in case offset_cost stays the same for
      // consecutive pixels. This describes a set of pixels similar to a
      // previous set (e.g. constant color regions).
      for (; i < pix_count - 1; ++i) {
        int offset_next, len_next;
        prev_cost = cost_manager->costs_[i - 1];

        if (is_offset_zero) {
          // No optimization can be made so we just push all of the
          // contributions from i.
          PushInterval(cost_manager, prev_cost, i, len);
        } else {
          // j_max is chosen as the smallest j such that:
          //       max of cost_cache_ < j*offset cost + min of cost_cache_
          // Therefore, the pixel influenced by i-j_max, cannot be influenced
          // by i. Only the costs after the end of what i contributed need to be
          // updated. cost_manager->interval_ends_ is a circular buffer that
          // stores those ends.
          const double distance_cost = prev_cost + offset_cost;
          int j = cost_manager->interval_ends_[interval_ends_index];
          if (i - first_i <= j_max ||
              !IsCostCacheIntervalWritable(j, i + len)) {
            PushInterval(cost_manager, distance_cost, i, len);
          } else {
            for (; j < i + len; ++j) {
              UpdateCost(cost_manager, j, i, distance_cost);
            }
          }
          // Store the new end in the circular buffer.
          assert(interval_ends_index < cost_manager->interval_ends_size_);
          cost_manager->interval_ends_[interval_ends_index] = i + len;
          if (++interval_ends_index > j_max) interval_ends_index = 0;
        }

        // Check whether i is the last pixel to consider, as it is handled
        // differently.
        if (i + 1 >= pix_count - 1) break;
        HashChainFindCopy(hash_chain, i + 1, &offset_next, &len_next);
        if (offset_next != offset) break;
        len = len_next;
        UpdateCostPerIndex(cost_manager, i);
        AddSingleLiteralWithCostModel(argb + i, &hashers, cost_model, i,
                                      use_color_cache, prev_cost,
                                      cost_manager->costs_, dist_array);
      }
      // Submit the last pixel.
      UpdateCostPerIndex(cost_manager, i + 1);

      // This if is for speedup only. It roughly doubles the speed, and
      // makes compression worse by .1 %.
      if (len >= skip_length && code <= skip_min_distance_code) {
        // Long copy for short distances, let's skip the middle
        // lookups for better copies.
        // 1) insert the hashes.
        if (use_color_cache) {
          int k;
          for (k = 0; k < len; ++k) {
            VP8LColorCacheInsert(&hashers, argb[i + k]);
          }
        }
        // 2) jump.
        {
          const int i_next = i + len - 1;  // for loop does ++i, thus -1 here.
          for (; i <= i_next; ++i) UpdateCostPerIndex(cost_manager, i + 1);
          i = i_next;
        }
        goto next_symbol;
      }
      if (len > 2) {
        // Also try the smallest interval possible (size 2).
        double cost_total =
            prev_cost + offset_cost + GetLengthCost(cost_model, 1);
        if (cost_manager->costs_[i + 1] > cost_total) {
          cost_manager->costs_[i + 1] = (float)cost_total;
          dist_array[i + 1] = 2;
        }
      }
    } else {
      // The pixel is added as a single literal so just update the costs.
      UpdateCostPerIndex(cost_manager, i + 1);
    }

    AddSingleLiteralWithCostModel(argb + i, &hashers, cost_model, i,
                                  use_color_cache, prev_cost,
                                  cost_manager->costs_, dist_array);

 next_symbol: ;
  }
  // Handle the last pixel.
  if (i == (pix_count - 1)) {
    AddSingleLiteralWithCostModel(
        argb + i, &hashers, cost_model, i, use_color_cache,
        cost_manager->costs_[pix_count - 2], cost_manager->costs_, dist_array);
  }

  ok = !refs->error_;
 Error:
  if (cc_init) VP8LColorCacheClear(&hashers);
  CostManagerClear(cost_manager);
  WebPSafeFree(cost_model);
  WebPSafeFree(cost_manager);
  return ok;
}

// We pack the path at the end of *dist_array and return
// a pointer to this part of the array. Example:
// dist_array = [1x2xx3x2] => packed [1x2x1232], chosen_path = [1232]
static void TraceBackwards(uint16_t* const dist_array,
                           int dist_array_size,
                           uint16_t** const chosen_path,
                           int* const chosen_path_size) {
  uint16_t* path = dist_array + dist_array_size;
  uint16_t* cur = dist_array + dist_array_size - 1;
  while (cur >= dist_array) {
    const int k = *cur;
    --path;
    *path = k;
    cur -= k;
  }
  *chosen_path = path;
  *chosen_path_size = (int)(dist_array + dist_array_size - path);
}

static int BackwardReferencesHashChainFollowChosenPath(
    const uint32_t* const argb, int cache_bits,
    const uint16_t* const chosen_path, int chosen_path_size,
    const VP8LHashChain* const hash_chain, VP8LBackwardRefs* const refs) {
  const int use_color_cache = (cache_bits > 0);
  int ix;
  int i = 0;
  int ok = 0;
  int cc_init = 0;
  VP8LColorCache hashers;

  if (use_color_cache) {
    cc_init = VP8LColorCacheInit(&hashers, cache_bits);
    if (!cc_init) goto Error;
  }

  ClearBackwardRefs(refs);
  for (ix = 0; ix < chosen_path_size; ++ix) {
    const int len = chosen_path[ix];
    if (len != 1) {
      int k;
      const int offset = HashChainFindOffset(hash_chain, i);
      BackwardRefsCursorAdd(refs, PixOrCopyCreateCopy(offset, len));
      if (use_color_cache) {
        for (k = 0; k < len; ++k) {
          VP8LColorCacheInsert(&hashers, argb[i + k]);
        }
      }
      i += len;
    } else {
      PixOrCopy v;
      const int idx =
          use_color_cache ? VP8LColorCacheContains(&hashers, argb[i]) : -1;
      if (idx >= 0) {
        // use_color_cache is true and hashers contains argb[i]
        // push pixel as a color cache index
        v = PixOrCopyCreateCacheIdx(idx);
      } else {
        if (use_color_cache) VP8LColorCacheInsert(&hashers, argb[i]);
        v = PixOrCopyCreateLiteral(argb[i]);
      }
      BackwardRefsCursorAdd(refs, v);
      ++i;
    }
  }
  ok = !refs->error_;
 Error:
  if (cc_init) VP8LColorCacheClear(&hashers);
  return ok;
}

// Returns 1 on success.
static int BackwardReferencesTraceBackwards(
    int xsize, int ysize, const uint32_t* const argb, int quality,
    int cache_bits, const VP8LHashChain* const hash_chain,
    VP8LBackwardRefs* const refs) {
  int ok = 0;
  const int dist_array_size = xsize * ysize;
  uint16_t* chosen_path = NULL;
  int chosen_path_size = 0;
  uint16_t* dist_array =
      (uint16_t*)WebPSafeMalloc(dist_array_size, sizeof(*dist_array));

  if (dist_array == NULL) goto Error;

  if (!BackwardReferencesHashChainDistanceOnly(
      xsize, ysize, argb, quality, cache_bits, hash_chain,
      refs, dist_array)) {
    goto Error;
  }
  TraceBackwards(dist_array, dist_array_size, &chosen_path, &chosen_path_size);
  if (!BackwardReferencesHashChainFollowChosenPath(
          argb, cache_bits, chosen_path, chosen_path_size, hash_chain, refs)) {
    goto Error;
  }
  ok = 1;
 Error:
  WebPSafeFree(dist_array);
  return ok;
}

static void BackwardReferences2DLocality(int xsize,
                                         const VP8LBackwardRefs* const refs) {
  VP8LRefsCursor c = VP8LRefsCursorInit(refs);
  while (VP8LRefsCursorOk(&c)) {
    if (PixOrCopyIsCopy(c.cur_pos)) {
      const int dist = c.cur_pos->argb_or_distance;
      const int transformed_dist = DistanceToPlaneCode(xsize, dist);
      c.cur_pos->argb_or_distance = transformed_dist;
    }
    VP8LRefsCursorNext(&c);
  }
}

// Computes the entropies for a color cache size (in bits) between 0 (unused)
// and cache_bits_max (inclusive).
// Returns 1 on success, 0 in case of allocation error.
static int ComputeCacheEntropies(const uint32_t* argb,
                                 const VP8LBackwardRefs* const refs,
                                 int cache_bits_max, double entropies[]) {
  int cc_init[MAX_COLOR_CACHE_BITS + 1] = { 0 };
  VP8LColorCache hashers[MAX_COLOR_CACHE_BITS + 1];
  VP8LRefsCursor c = VP8LRefsCursorInit(refs);
  VP8LHistogram* histos[MAX_COLOR_CACHE_BITS + 1] = { NULL };
  int ok = 0;
  int i;

  for (i = 0; i <= cache_bits_max; ++i) {
    histos[i] = VP8LAllocateHistogram(i);
    if (histos[i] == NULL) goto Error;
    if (i == 0) continue;
    cc_init[i] = VP8LColorCacheInit(&hashers[i], i);
    if (!cc_init[i]) goto Error;
  }

  assert(cache_bits_max >= 0);
  // Do not use the color cache for cache_bits=0.
  while (VP8LRefsCursorOk(&c)) {
    VP8LHistogramAddSinglePixOrCopy(histos[0], c.cur_pos);
    VP8LRefsCursorNext(&c);
  }
  if (cache_bits_max > 0) {
    c = VP8LRefsCursorInit(refs);
    while (VP8LRefsCursorOk(&c)) {
      const PixOrCopy* const v = c.cur_pos;
      if (PixOrCopyIsLiteral(v)) {
        const uint32_t pix = *argb++;
        // The keys of the caches can be derived from the longest one.
        int key = HashPix(pix, 32 - cache_bits_max);
        for (i = cache_bits_max; i >= 1; --i, key >>= 1) {
          if (VP8LColorCacheLookup(&hashers[i], key) == pix) {
            ++histos[i]->literal_[NUM_LITERAL_CODES + NUM_LENGTH_CODES + key];
          } else {
            VP8LColorCacheSet(&hashers[i], key, pix);
            ++histos[i]->blue_[pix & 0xff];
            ++histos[i]->literal_[(pix >> 8) & 0xff];
            ++histos[i]->red_[(pix >> 16) & 0xff];
            ++histos[i]->alpha_[pix >> 24];
          }
        }
      } else {
        // Update the histograms for distance/length.
        int len = PixOrCopyLength(v);
        int code_dist, code_len, extra_bits;
        uint32_t argb_prev = *argb ^ 0xffffffffu;
        VP8LPrefixEncodeBits(len, &code_len, &extra_bits);
        VP8LPrefixEncodeBits(PixOrCopyDistance(v), &code_dist, &extra_bits);
        for (i = 1; i <= cache_bits_max; ++i) {
          ++histos[i]->literal_[NUM_LITERAL_CODES + code_len];
          ++histos[i]->distance_[code_dist];
        }
        // Update the colors caches.
        do {
          if (*argb != argb_prev) {
            // Efficiency: insert only if the color changes.
            int key = HashPix(*argb, 32 - cache_bits_max);
            for (i = cache_bits_max; i >= 1; --i, key >>= 1) {
              hashers[i].colors_[key] = *argb;
            }
            argb_prev = *argb;
          }
          argb++;
        } while (--len != 0);
      }
      VP8LRefsCursorNext(&c);
    }
  }
  for (i = 0; i <= cache_bits_max; ++i) {
    entropies[i] = VP8LHistogramEstimateBits(histos[i]);
  }
  ok = 1;
Error:
  for (i = 0; i <= cache_bits_max; ++i) {
    if (cc_init[i]) VP8LColorCacheClear(&hashers[i]);
    VP8LFreeHistogram(histos[i]);
  }
  return ok;
}

// Evaluate optimal cache bits for the local color cache.
// The input *best_cache_bits sets the maximum cache bits to use (passing 0
// implies disabling the local color cache). The local color cache is also
// disabled for the lower (<= 25) quality.
// Returns 0 in case of memory error.
static int CalculateBestCacheSize(const uint32_t* const argb,
                                  int xsize, int ysize, int quality,
                                  const VP8LHashChain* const hash_chain,
                                  VP8LBackwardRefs* const refs,
                                  int* const lz77_computed,
                                  int* const best_cache_bits) {
  int i;
  int cache_bits_high = (quality <= 25) ? 0 : *best_cache_bits;
  double entropy_min = MAX_ENTROPY;
  double entropies[MAX_COLOR_CACHE_BITS + 1];

  assert(cache_bits_high <= MAX_COLOR_CACHE_BITS);

  *lz77_computed = 0;
  if (cache_bits_high == 0) {
    *best_cache_bits = 0;
    // Local color cache is disabled.
    return 1;
  }
  // Compute LZ77 with no cache (0 bits), as the ideal LZ77 with a color cache
  // is not that different in practice.
  if (!BackwardReferencesLz77(xsize, ysize, argb, 0, hash_chain, refs)) {
    return 0;
  }
  // Find the cache_bits giving the lowest entropy. The search is done in a
  // brute-force way as the function (entropy w.r.t cache_bits) can be
  // anything in practice.
  if (!ComputeCacheEntropies(argb, refs, cache_bits_high, entropies)) {
    return 0;
  }
  for (i = 0; i <= cache_bits_high; ++i) {
    if (i == 0 || entropies[i] < entropy_min) {
      entropy_min = entropies[i];
      *best_cache_bits = i;
    }
  }
  return 1;
}

// Update (in-place) backward references for specified cache_bits.
static int BackwardRefsWithLocalCache(const uint32_t* const argb,
                                      int cache_bits,
                                      VP8LBackwardRefs* const refs) {
  int pixel_index = 0;
  VP8LColorCache hashers;
  VP8LRefsCursor c = VP8LRefsCursorInit(refs);
  if (!VP8LColorCacheInit(&hashers, cache_bits)) return 0;

  while (VP8LRefsCursorOk(&c)) {
    PixOrCopy* const v = c.cur_pos;
    if (PixOrCopyIsLiteral(v)) {
      const uint32_t argb_literal = v->argb_or_distance;
      const int ix = VP8LColorCacheContains(&hashers, argb_literal);
      if (ix >= 0) {
        // hashers contains argb_literal
        *v = PixOrCopyCreateCacheIdx(ix);
      } else {
        VP8LColorCacheInsert(&hashers, argb_literal);
      }
      ++pixel_index;
    } else {
      // refs was created without local cache, so it can not have cache indexes.
      int k;
      assert(PixOrCopyIsCopy(v));
      for (k = 0; k < v->len; ++k) {
        VP8LColorCacheInsert(&hashers, argb[pixel_index++]);
      }
    }
    VP8LRefsCursorNext(&c);
  }
  VP8LColorCacheClear(&hashers);
  return 1;
}

static VP8LBackwardRefs* GetBackwardReferencesLowEffort(
    int width, int height, const uint32_t* const argb,
    int* const cache_bits, const VP8LHashChain* const hash_chain,
    VP8LBackwardRefs refs_array[2]) {
  VP8LBackwardRefs* refs_lz77 = &refs_array[0];
  *cache_bits = 0;
  if (!BackwardReferencesLz77(width, height, argb, 0, hash_chain, refs_lz77)) {
    return NULL;
  }
  BackwardReferences2DLocality(width, refs_lz77);
  return refs_lz77;
}

static VP8LBackwardRefs* GetBackwardReferences(
    int width, int height, const uint32_t* const argb, int quality,
    int* const cache_bits, const VP8LHashChain* const hash_chain,
    VP8LBackwardRefs refs_array[2]) {
  int lz77_is_useful;
  int lz77_computed;
  double bit_cost_lz77, bit_cost_rle;
  VP8LBackwardRefs* best = NULL;
  VP8LBackwardRefs* refs_lz77 = &refs_array[0];
  VP8LBackwardRefs* refs_rle = &refs_array[1];
  VP8LHistogram* histo = NULL;

  if (!CalculateBestCacheSize(argb, width, height, quality, hash_chain,
                              refs_lz77, &lz77_computed, cache_bits)) {
    goto Error;
  }

  if (lz77_computed) {
    // Transform refs_lz77 for the optimized cache_bits.
    if (*cache_bits > 0) {
      if (!BackwardRefsWithLocalCache(argb, *cache_bits, refs_lz77)) {
        goto Error;
      }
    }
  } else {
    if (!BackwardReferencesLz77(width, height, argb, *cache_bits, hash_chain,
                                refs_lz77)) {
      goto Error;
    }
  }

  if (!BackwardReferencesRle(width, height, argb, *cache_bits, refs_rle)) {
    goto Error;
  }

  histo = VP8LAllocateHistogram(*cache_bits);
  if (histo == NULL) goto Error;

  {
    // Evaluate LZ77 coding.
    VP8LHistogramCreate(histo, refs_lz77, *cache_bits);
    bit_cost_lz77 = VP8LHistogramEstimateBits(histo);
    // Evaluate RLE coding.
    VP8LHistogramCreate(histo, refs_rle, *cache_bits);
    bit_cost_rle = VP8LHistogramEstimateBits(histo);
    // Decide if LZ77 is useful.
    lz77_is_useful = (bit_cost_lz77 < bit_cost_rle);
  }

  // Choose appropriate backward reference.
  if (lz77_is_useful) {
    // TraceBackwards is costly. Don't execute it at lower quality.
    const int try_lz77_trace_backwards = (quality >= 25);
    best = refs_lz77;   // default guess: lz77 is better
    if (try_lz77_trace_backwards) {
      VP8LBackwardRefs* const refs_trace = refs_rle;
      if (!VP8LBackwardRefsCopy(refs_lz77, refs_trace)) {
        best = NULL;
        goto Error;
      }
      if (BackwardReferencesTraceBackwards(width, height, argb, quality,
                                           *cache_bits, hash_chain,
                                           refs_trace)) {
        double bit_cost_trace;
        // Evaluate LZ77 coding.
        VP8LHistogramCreate(histo, refs_trace, *cache_bits);
        bit_cost_trace = VP8LHistogramEstimateBits(histo);
        if (bit_cost_trace < bit_cost_lz77) {
          best = refs_trace;
        }
      }
    }
  } else {
    best = refs_rle;
  }

  BackwardReferences2DLocality(width, best);

 Error:
  VP8LFreeHistogram(histo);
  return best;
}

VP8LBackwardRefs* VP8LGetBackwardReferences(
    int width, int height, const uint32_t* const argb, int quality,
    int low_effort, int* const cache_bits,
    const VP8LHashChain* const hash_chain, VP8LBackwardRefs refs_array[2]) {
  if (low_effort) {
    return GetBackwardReferencesLowEffort(width, height, argb, cache_bits,
                                          hash_chain, refs_array);
  } else {
    return GetBackwardReferences(width, height, argb, quality, cache_bits,
                                 hash_chain, refs_array);
  }
}