histogram.c 17.2 KB
Newer Older
a  
Kai Westerkamp committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
// Copyright 2012 Google Inc. All Rights Reserved.
//
// Use of this source code is governed by a BSD-style license
// that can be found in the COPYING file in the root of the source
// tree. An additional intellectual property rights grant can be found
// in the file PATENTS. All contributing project authors may
// be found in the AUTHORS file in the root of the source tree.
// -----------------------------------------------------------------------------
//
// Author: Jyrki Alakuijala (jyrki@google.com)
//
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif

#include <math.h>
#include <stdio.h>

#include "./backward_references.h"
#include "./histogram.h"
#include "../dsp/lossless.h"
#include "../utils/utils.h"

static void HistogramClear(VP8LHistogram* const p) {
  memset(p->literal_, 0, sizeof(p->literal_));
  memset(p->red_, 0, sizeof(p->red_));
  memset(p->blue_, 0, sizeof(p->blue_));
  memset(p->alpha_, 0, sizeof(p->alpha_));
  memset(p->distance_, 0, sizeof(p->distance_));
  p->bit_cost_ = 0;
}

void VP8LHistogramStoreRefs(const VP8LBackwardRefs* const refs,
                            VP8LHistogram* const histo) {
  int i;
  for (i = 0; i < refs->size; ++i) {
    VP8LHistogramAddSinglePixOrCopy(histo, &refs->refs[i]);
  }
}

void VP8LHistogramCreate(VP8LHistogram* const p,
                         const VP8LBackwardRefs* const refs,
                         int palette_code_bits) {
  if (palette_code_bits >= 0) {
    p->palette_code_bits_ = palette_code_bits;
  }
  HistogramClear(p);
  VP8LHistogramStoreRefs(refs, p);
}

void VP8LHistogramInit(VP8LHistogram* const p, int palette_code_bits) {
  p->palette_code_bits_ = palette_code_bits;
  HistogramClear(p);
}

VP8LHistogramSet* VP8LAllocateHistogramSet(int size, int cache_bits) {
  int i;
  VP8LHistogramSet* set;
  VP8LHistogram* bulk;
  const uint64_t total_size = sizeof(*set)
                            + (uint64_t)size * sizeof(*set->histograms)
                            + (uint64_t)size * sizeof(**set->histograms);
  uint8_t* memory = (uint8_t*)WebPSafeMalloc(total_size, sizeof(*memory));
  if (memory == NULL) return NULL;

  set = (VP8LHistogramSet*)memory;
  memory += sizeof(*set);
  set->histograms = (VP8LHistogram**)memory;
  memory += size * sizeof(*set->histograms);
  bulk = (VP8LHistogram*)memory;
  set->max_size = size;
  set->size = size;
  for (i = 0; i < size; ++i) {
    set->histograms[i] = bulk + i;
    VP8LHistogramInit(set->histograms[i], cache_bits);
  }
  return set;
}

// -----------------------------------------------------------------------------

void VP8LHistogramAddSinglePixOrCopy(VP8LHistogram* const histo,
                                     const PixOrCopy* const v) {
  if (PixOrCopyIsLiteral(v)) {
    ++histo->alpha_[PixOrCopyLiteral(v, 3)];
    ++histo->red_[PixOrCopyLiteral(v, 2)];
    ++histo->literal_[PixOrCopyLiteral(v, 1)];
    ++histo->blue_[PixOrCopyLiteral(v, 0)];
  } else if (PixOrCopyIsCacheIdx(v)) {
    int literal_ix = 256 + NUM_LENGTH_CODES + PixOrCopyCacheIdx(v);
    ++histo->literal_[literal_ix];
  } else {
    int code, extra_bits_count, extra_bits_value;
    PrefixEncode(PixOrCopyLength(v),
                 &code, &extra_bits_count, &extra_bits_value);
    ++histo->literal_[256 + code];
    PrefixEncode(PixOrCopyDistance(v),
                 &code, &extra_bits_count, &extra_bits_value);
    ++histo->distance_[code];
  }
}

static double BitsEntropy(const int* const array, int n) {
  double retval = 0.;
  int sum = 0;
  int nonzeros = 0;
  int max_val = 0;
  int i;
  double mix;
  for (i = 0; i < n; ++i) {
    if (array[i] != 0) {
      sum += array[i];
      ++nonzeros;
      retval -= VP8LFastSLog2(array[i]);
      if (max_val < array[i]) {
        max_val = array[i];
      }
    }
  }
  retval += VP8LFastSLog2(sum);

  if (nonzeros < 5) {
    if (nonzeros <= 1) {
      return 0;
    }
    // Two symbols, they will be 0 and 1 in a Huffman code.
    // Let's mix in a bit of entropy to favor good clustering when
    // distributions of these are combined.
    if (nonzeros == 2) {
      return 0.99 * sum + 0.01 * retval;
    }
    // No matter what the entropy says, we cannot be better than min_limit
    // with Huffman coding. I am mixing a bit of entropy into the
    // min_limit since it produces much better (~0.5 %) compression results
    // perhaps because of better entropy clustering.
    if (nonzeros == 3) {
      mix = 0.95;
    } else {
      mix = 0.7;  // nonzeros == 4.
    }
  } else {
    mix = 0.627;
  }

  {
    double min_limit = 2 * sum - max_val;
    min_limit = mix * min_limit + (1.0 - mix) * retval;
    return (retval < min_limit) ? min_limit : retval;
  }
}

// Returns the cost encode the rle-encoded entropy code.
// The constants in this function are experimental.
static double HuffmanCost(const int* const population, int length) {
  // Small bias because Huffman code length is typically not stored in
  // full length.
  static const int kHuffmanCodeOfHuffmanCodeSize = CODE_LENGTH_CODES * 3;
  static const double kSmallBias = 9.1;
  double retval = kHuffmanCodeOfHuffmanCodeSize - kSmallBias;
  int streak = 0;
  int i = 0;
  for (; i < length - 1; ++i) {
    ++streak;
    if (population[i] == population[i + 1]) {
      continue;
    }
 last_streak_hack:
    // population[i] points now to the symbol in the streak of same values.
    if (streak > 3) {
      if (population[i] == 0) {
        retval += 1.5625 + 0.234375 * streak;
      } else {
        retval += 2.578125 + 0.703125 * streak;
      }
    } else {
      if (population[i] == 0) {
        retval += 1.796875 * streak;
      } else {
        retval += 3.28125 * streak;
      }
    }
    streak = 0;
  }
  if (i == length - 1) {
    ++streak;
    goto last_streak_hack;
  }
  return retval;
}

static double PopulationCost(const int* const population, int length) {
  return BitsEntropy(population, length) + HuffmanCost(population, length);
}

static double ExtraCost(const int* const population, int length) {
  int i;
  double cost = 0.;
  for (i = 2; i < length - 2; ++i) cost += (i >> 1) * population[i + 2];
  return cost;
}

// Estimates the Entropy + Huffman + other block overhead size cost.
double VP8LHistogramEstimateBits(const VP8LHistogram* const p) {
  return PopulationCost(p->literal_, VP8LHistogramNumCodes(p))
       + PopulationCost(p->red_, 256)
       + PopulationCost(p->blue_, 256)
       + PopulationCost(p->alpha_, 256)
       + PopulationCost(p->distance_, NUM_DISTANCE_CODES)
       + ExtraCost(p->literal_ + 256, NUM_LENGTH_CODES)
       + ExtraCost(p->distance_, NUM_DISTANCE_CODES);
}

double VP8LHistogramEstimateBitsBulk(const VP8LHistogram* const p) {
  return BitsEntropy(p->literal_, VP8LHistogramNumCodes(p))
       + BitsEntropy(p->red_, 256)
       + BitsEntropy(p->blue_, 256)
       + BitsEntropy(p->alpha_, 256)
       + BitsEntropy(p->distance_, NUM_DISTANCE_CODES)
       + ExtraCost(p->literal_ + 256, NUM_LENGTH_CODES)
       + ExtraCost(p->distance_, NUM_DISTANCE_CODES);
}

// -----------------------------------------------------------------------------
// Various histogram combine/cost-eval functions

// Adds 'in' histogram to 'out'
static void HistogramAdd(const VP8LHistogram* const in,
                         VP8LHistogram* const out) {
  int i;
  for (i = 0; i < PIX_OR_COPY_CODES_MAX; ++i) {
    out->literal_[i] += in->literal_[i];
  }
  for (i = 0; i < NUM_DISTANCE_CODES; ++i) {
    out->distance_[i] += in->distance_[i];
  }
  for (i = 0; i < 256; ++i) {
    out->red_[i] += in->red_[i];
    out->blue_[i] += in->blue_[i];
    out->alpha_[i] += in->alpha_[i];
  }
}

// Performs out = a + b, computing the cost C(a+b) - C(a) - C(b) while comparing
// to the threshold value 'cost_threshold'. The score returned is
//  Score = C(a+b) - C(a) - C(b), where C(a) + C(b) is known and fixed.
// Since the previous score passed is 'cost_threshold', we only need to compare
// the partial cost against 'cost_threshold + C(a) + C(b)' to possibly bail-out
// early.
static double HistogramAddEval(const VP8LHistogram* const a,
                               const VP8LHistogram* const b,
                               VP8LHistogram* const out,
                               double cost_threshold) {
  double cost = 0;
  const double sum_cost = a->bit_cost_ + b->bit_cost_;
  int i;

  cost_threshold += sum_cost;

  // palette_code_bits_ is part of the cost evaluation for literal_.
  // TODO(skal): remove/simplify this palette_code_bits_?
  out->palette_code_bits_ =
      (a->palette_code_bits_ > b->palette_code_bits_) ? a->palette_code_bits_ :
                                                        b->palette_code_bits_;
  for (i = 0; i < PIX_OR_COPY_CODES_MAX; ++i) {
    out->literal_[i] = a->literal_[i] + b->literal_[i];
  }
  cost += PopulationCost(out->literal_, VP8LHistogramNumCodes(out));
  cost += ExtraCost(out->literal_ + 256, NUM_LENGTH_CODES);
  if (cost > cost_threshold) return cost;

  for (i = 0; i < 256; ++i) out->red_[i] = a->red_[i] + b->red_[i];
  cost += PopulationCost(out->red_, 256);
  if (cost > cost_threshold) return cost;

  for (i = 0; i < 256; ++i) out->blue_[i] = a->blue_[i] + b->blue_[i];
  cost += PopulationCost(out->blue_, 256);
  if (cost > cost_threshold) return cost;

  for (i = 0; i < NUM_DISTANCE_CODES; ++i) {
    out->distance_[i] = a->distance_[i] + b->distance_[i];
  }
  cost += PopulationCost(out->distance_, NUM_DISTANCE_CODES);
  cost += ExtraCost(out->distance_, NUM_DISTANCE_CODES);
  if (cost > cost_threshold) return cost;

  for (i = 0; i < 256; ++i) out->alpha_[i] = a->alpha_[i] + b->alpha_[i];
  cost += PopulationCost(out->alpha_, 256);

  out->bit_cost_ = cost;
  return cost - sum_cost;
}

// Same as HistogramAddEval(), except that the resulting histogram
// is not stored. Only the cost C(a+b) - C(a) is evaluated. We omit
// the term C(b) which is constant over all the evaluations.
static double HistogramAddThresh(const VP8LHistogram* const a,
                                 const VP8LHistogram* const b,
                                 double cost_threshold) {
  int tmp[PIX_OR_COPY_CODES_MAX];  // <= max storage we'll need
  int i;
  double cost = -a->bit_cost_;

  for (i = 0; i < PIX_OR_COPY_CODES_MAX; ++i) {
    tmp[i] = a->literal_[i] + b->literal_[i];
  }
  // note that the tests are ordered so that the usually largest
  // cost shares come first.
  cost += PopulationCost(tmp, VP8LHistogramNumCodes(a));
  cost += ExtraCost(tmp + 256, NUM_LENGTH_CODES);
  if (cost > cost_threshold) return cost;

  for (i = 0; i < 256; ++i) tmp[i] = a->red_[i] + b->red_[i];
  cost += PopulationCost(tmp, 256);
  if (cost > cost_threshold) return cost;

  for (i = 0; i < 256; ++i) tmp[i] = a->blue_[i] + b->blue_[i];
  cost += PopulationCost(tmp, 256);
  if (cost > cost_threshold) return cost;

  for (i = 0; i < NUM_DISTANCE_CODES; ++i) {
    tmp[i] = a->distance_[i] + b->distance_[i];
  }
  cost += PopulationCost(tmp, NUM_DISTANCE_CODES);
  cost += ExtraCost(tmp, NUM_DISTANCE_CODES);
  if (cost > cost_threshold) return cost;

  for (i = 0; i < 256; ++i) tmp[i] = a->alpha_[i] + b->alpha_[i];
  cost += PopulationCost(tmp, 256);

  return cost;
}

// -----------------------------------------------------------------------------

static void HistogramBuildImage(int xsize, int histo_bits,
                                const VP8LBackwardRefs* const backward_refs,
                                VP8LHistogramSet* const image) {
  int i;
  int x = 0, y = 0;
  const int histo_xsize = VP8LSubSampleSize(xsize, histo_bits);
  VP8LHistogram** const histograms = image->histograms;
  assert(histo_bits > 0);
  for (i = 0; i < backward_refs->size; ++i) {
    const PixOrCopy* const v = &backward_refs->refs[i];
    const int ix = (y >> histo_bits) * histo_xsize + (x >> histo_bits);
    VP8LHistogramAddSinglePixOrCopy(histograms[ix], v);
    x += PixOrCopyLength(v);
    while (x >= xsize) {
      x -= xsize;
      ++y;
    }
  }
}

static uint32_t MyRand(uint32_t *seed) {
  *seed *= 16807U;
  if (*seed == 0) {
    *seed = 1;
  }
  return *seed;
}

static int HistogramCombine(const VP8LHistogramSet* const in,
                            VP8LHistogramSet* const out, int iter_mult,
                            int num_pairs, int num_tries_no_success) {
  int ok = 0;
  int i, iter;
  uint32_t seed = 0;
  int tries_with_no_success = 0;
  int out_size = in->size;
  const int outer_iters = in->size * iter_mult;
  const int min_cluster_size = 2;
  VP8LHistogram* const histos = (VP8LHistogram*)malloc(2 * sizeof(*histos));
  VP8LHistogram* cur_combo = histos + 0;    // trial merged histogram
  VP8LHistogram* best_combo = histos + 1;   // best merged histogram so far
  if (histos == NULL) goto End;

  // Copy histograms from in[] to out[].
  assert(in->size <= out->size);
  for (i = 0; i < in->size; ++i) {
    in->histograms[i]->bit_cost_ = VP8LHistogramEstimateBits(in->histograms[i]);
    *out->histograms[i] = *in->histograms[i];
  }

  // Collapse similar histograms in 'out'.
  for (iter = 0; iter < outer_iters && out_size >= min_cluster_size; ++iter) {
    double best_cost_diff = 0.;
    int best_idx1 = -1, best_idx2 = 1;
    int j;
    const int num_tries = (num_pairs < out_size) ? num_pairs : out_size;
    seed += iter;
    for (j = 0; j < num_tries; ++j) {
      double curr_cost_diff;
      // Choose two histograms at random and try to combine them.
      const uint32_t idx1 = MyRand(&seed) % out_size;
      const uint32_t tmp = (j & 7) + 1;
      const uint32_t diff = (tmp < 3) ? tmp : MyRand(&seed) % (out_size - 1);
      const uint32_t idx2 = (idx1 + diff + 1) % out_size;
      if (idx1 == idx2) {
        continue;
      }
      // Calculate cost reduction on combining.
      curr_cost_diff = HistogramAddEval(out->histograms[idx1],
                                        out->histograms[idx2],
                                        cur_combo, best_cost_diff);
      if (curr_cost_diff < best_cost_diff) {    // found a better pair?
        {     // swap cur/best combo histograms
          VP8LHistogram* const tmp_histo = cur_combo;
          cur_combo = best_combo;
          best_combo = tmp_histo;
        }
        best_cost_diff = curr_cost_diff;
        best_idx1 = idx1;
        best_idx2 = idx2;
      }
    }

    if (best_idx1 >= 0) {
      *out->histograms[best_idx1] = *best_combo;
      // swap best_idx2 slot with last one (which is now unused)
      --out_size;
      if (best_idx2 != out_size) {
        out->histograms[best_idx2] = out->histograms[out_size];
        out->histograms[out_size] = NULL;   // just for sanity check.
      }
      tries_with_no_success = 0;
    }
    if (++tries_with_no_success >= num_tries_no_success) {
      break;
    }
  }
  out->size = out_size;
  ok = 1;

 End:
  free(histos);
  return ok;
}

// -----------------------------------------------------------------------------
// Histogram refinement

// What is the bit cost of moving square_histogram from cur_symbol to candidate.
static double HistogramDistance(const VP8LHistogram* const square_histogram,
                                const VP8LHistogram* const candidate,
                                double cost_threshold) {
  return HistogramAddThresh(candidate, square_histogram, cost_threshold);
}

// Find the best 'out' histogram for each of the 'in' histograms.
// Note: we assume that out[]->bit_cost_ is already up-to-date.
static void HistogramRemap(const VP8LHistogramSet* const in,
                           const VP8LHistogramSet* const out,
                           uint16_t* const symbols) {
  int i;
  for (i = 0; i < in->size; ++i) {
    int best_out = 0;
    double best_bits =
        HistogramDistance(in->histograms[i], out->histograms[0], 1.e38);
    int k;
    for (k = 1; k < out->size; ++k) {
      const double cur_bits =
          HistogramDistance(in->histograms[i], out->histograms[k], best_bits);
      if (cur_bits < best_bits) {
        best_bits = cur_bits;
        best_out = k;
      }
    }
    symbols[i] = best_out;
  }

  // Recompute each out based on raw and symbols.
  for (i = 0; i < out->size; ++i) {
    HistogramClear(out->histograms[i]);
  }
  for (i = 0; i < in->size; ++i) {
    HistogramAdd(in->histograms[i], out->histograms[symbols[i]]);
  }
}

int VP8LGetHistoImageSymbols(int xsize, int ysize,
                             const VP8LBackwardRefs* const refs,
                             int quality, int histo_bits, int cache_bits,
                             VP8LHistogramSet* const image_in,
                             uint16_t* const histogram_symbols) {
  int ok = 0;
  const int histo_xsize = histo_bits ? VP8LSubSampleSize(xsize, histo_bits) : 1;
  const int histo_ysize = histo_bits ? VP8LSubSampleSize(ysize, histo_bits) : 1;
  const int histo_image_raw_size = histo_xsize * histo_ysize;

  // Heuristic params for HistogramCombine().
  const int num_tries_no_success = 8 + (quality >> 1);
  const int iter_mult = (quality < 27) ? 1 : 1 + ((quality - 27) >> 4);
  const int num_pairs = (quality < 25) ? 10 : (5 * quality) >> 3;

  VP8LHistogramSet* const image_out =
      VP8LAllocateHistogramSet(histo_image_raw_size, cache_bits);
  if (image_out == NULL) return 0;

  // Build histogram image.
  HistogramBuildImage(xsize, histo_bits, refs, image_out);
  // Collapse similar histograms.
  if (!HistogramCombine(image_out, image_in, iter_mult, num_pairs,
                        num_tries_no_success)) {
    goto Error;
  }
  // Find the optimal map from original histograms to the final ones.
  HistogramRemap(image_out, image_in, histogram_symbols);
  ok = 1;

Error:
  free(image_out);
  return ok;
}