mathfunc.cu 8.87 KB
Newer Older
wester committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#if !defined CUDA_DISABLER

#include "internal_shared.hpp"

namespace cv { namespace gpu { namespace device
{
    namespace mathfunc
    {
        //////////////////////////////////////////////////////////////////////////////////////
        // Cart <-> Polar

        struct Nothing
        {
            static __device__ __forceinline__ void calc(int, int, float, float, float*, size_t, float)
            {
            }
        };
        struct Magnitude
        {
            static __device__ __forceinline__ void calc(int x, int y, float x_data, float y_data, float* dst, size_t dst_step, float)
            {
                dst[y * dst_step + x] = ::sqrtf(x_data * x_data + y_data * y_data);
            }
        };
        struct MagnitudeSqr
        {
            static __device__ __forceinline__ void calc(int x, int y, float x_data, float y_data, float* dst, size_t dst_step, float)
            {
                dst[y * dst_step + x] = x_data * x_data + y_data * y_data;
            }
        };
        struct Atan2
        {
            static __device__ __forceinline__ void calc(int x, int y, float x_data, float y_data, float* dst, size_t dst_step, float scale)
            {
                float angle = ::atan2f(y_data, x_data);
                angle += (angle < 0) * 2.0f * CV_PI_F;
                dst[y * dst_step + x] = scale * angle;
            }
        };
        template <typename Mag, typename Angle>
        __global__ void cartToPolar(const float* xptr, size_t x_step, const float* yptr, size_t y_step,
                                    float* mag, size_t mag_step, float* angle, size_t angle_step, float scale, int width, int height)
        {
            const int x = blockDim.x * blockIdx.x + threadIdx.x;
            const int y = blockDim.y * blockIdx.y + threadIdx.y;

            if (x < width && y < height)
            {
                float x_data = xptr[y * x_step + x];
                float y_data = yptr[y * y_step + x];

                Mag::calc(x, y, x_data, y_data, mag, mag_step, scale);
                Angle::calc(x, y, x_data, y_data, angle, angle_step, scale);
            }
        }

        struct NonEmptyMag
        {
            static __device__ __forceinline__ float get(const float* mag, size_t mag_step, int x, int y)
            {
                return mag[y * mag_step + x];
            }
        };
        struct EmptyMag
        {
            static __device__ __forceinline__ float get(const float*, size_t, int, int)
            {
                return 1.0f;
            }
        };
        template <typename Mag>
        __global__ void polarToCart(const float* mag, size_t mag_step, const float* angle, size_t angle_step, float scale,
            float* xptr, size_t x_step, float* yptr, size_t y_step, int width, int height)
        {
            const int x = blockDim.x * blockIdx.x + threadIdx.x;
            const int y = blockDim.y * blockIdx.y + threadIdx.y;

            if (x < width && y < height)
            {
                float mag_data = Mag::get(mag, mag_step, x, y);
                float angle_data = angle[y * angle_step + x];
                float sin_a, cos_a;

                ::sincosf(scale * angle_data, &sin_a, &cos_a);

                xptr[y * x_step + x] = mag_data * cos_a;
                yptr[y * y_step + x] = mag_data * sin_a;
            }
        }

        template <typename Mag, typename Angle>
        void cartToPolar_caller(PtrStepSzf x, PtrStepSzf y, PtrStepSzf mag, PtrStepSzf angle, bool angleInDegrees, cudaStream_t stream)
        {
            dim3 threads(32, 8, 1);
            dim3 grid(1, 1, 1);

            grid.x = divUp(x.cols, threads.x);
            grid.y = divUp(x.rows, threads.y);

            const float scale = angleInDegrees ? (180.0f / CV_PI_F) : 1.f;

            cartToPolar<Mag, Angle><<<grid, threads, 0, stream>>>(
                x.data, x.step/x.elemSize(), y.data, y.step/y.elemSize(),
                mag.data, mag.step/mag.elemSize(), angle.data, angle.step/angle.elemSize(), scale, x.cols, x.rows);
            cudaSafeCall( cudaGetLastError() );

            if (stream == 0)
                cudaSafeCall( cudaDeviceSynchronize() );
        }

        void cartToPolar_gpu(PtrStepSzf x, PtrStepSzf y, PtrStepSzf mag, bool magSqr, PtrStepSzf angle, bool angleInDegrees, cudaStream_t stream)
        {
            typedef void (*caller_t)(PtrStepSzf x, PtrStepSzf y, PtrStepSzf mag, PtrStepSzf angle, bool angleInDegrees, cudaStream_t stream);
            static const caller_t callers[2][2][2] =
            {
                {
                    {
                        cartToPolar_caller<Magnitude, Atan2>,
                        cartToPolar_caller<Magnitude, Nothing>
                    },
                    {
                        cartToPolar_caller<MagnitudeSqr, Atan2>,
                        cartToPolar_caller<MagnitudeSqr, Nothing>,
                    }
                },
                {
                    {
                        cartToPolar_caller<Nothing, Atan2>,
                        cartToPolar_caller<Nothing, Nothing>
                    },
                    {
                        cartToPolar_caller<Nothing, Atan2>,
                        cartToPolar_caller<Nothing, Nothing>,
                    }
                }
            };

            callers[mag.data == 0][magSqr][angle.data == 0](x, y, mag, angle, angleInDegrees, stream);
        }

        template <typename Mag>
        void polarToCart_caller(PtrStepSzf mag, PtrStepSzf angle, PtrStepSzf x, PtrStepSzf y, bool angleInDegrees, cudaStream_t stream)
        {
            dim3 threads(32, 8, 1);
            dim3 grid(1, 1, 1);

            grid.x = divUp(mag.cols, threads.x);
            grid.y = divUp(mag.rows, threads.y);

            const float scale = angleInDegrees ? (CV_PI_F / 180.0f) : 1.0f;

            polarToCart<Mag><<<grid, threads, 0, stream>>>(mag.data, mag.step/mag.elemSize(),
                angle.data, angle.step/angle.elemSize(), scale, x.data, x.step/x.elemSize(), y.data, y.step/y.elemSize(), mag.cols, mag.rows);
            cudaSafeCall( cudaGetLastError() );

            if (stream == 0)
                cudaSafeCall( cudaDeviceSynchronize() );
        }

        void polarToCart_gpu(PtrStepSzf mag, PtrStepSzf angle, PtrStepSzf x, PtrStepSzf y, bool angleInDegrees, cudaStream_t stream)
        {
            typedef void (*caller_t)(PtrStepSzf mag, PtrStepSzf angle, PtrStepSzf x, PtrStepSzf y, bool angleInDegrees, cudaStream_t stream);
            static const caller_t callers[2] =
            {
                polarToCart_caller<NonEmptyMag>,
                polarToCart_caller<EmptyMag>
            };

            callers[mag.data == 0](mag, angle, x, y, angleInDegrees, stream);
        }
    } // namespace mathfunc
}}} // namespace cv { namespace gpu { namespace device

#endif /* CUDA_DISABLER */