stereobm.cu 23.6 KB
Newer Older
wester committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#if !defined CUDA_DISABLER

wester committed
45
#include "internal_shared.hpp"
wester committed
46

wester committed
47
namespace cv { namespace gpu { namespace device
wester committed
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
{
    namespace stereobm
    {
        //////////////////////////////////////////////////////////////////////////////////////////////////
        /////////////////////////////////////// Stereo BM ////////////////////////////////////////////////
        //////////////////////////////////////////////////////////////////////////////////////////////////

        #define ROWSperTHREAD 21     // the number of rows a thread will process

        #define BLOCK_W 128          // the thread block width (464)
        #define N_DISPARITIES 8

        #define STEREO_MIND 0                    // The minimum d range to check
        #define STEREO_DISP_STEP N_DISPARITIES   // the d step, must be <= 1 to avoid aliasing

        __constant__ unsigned int* cminSSDImage;
        __constant__ size_t cminSSD_step;
        __constant__ int cwidth;
        __constant__ int cheight;

        __device__ __forceinline__ int SQ(int a)
        {
            return a * a;
        }

        template<int RADIUS>
        __device__ unsigned int CalcSSD(volatile unsigned int *col_ssd_cache, volatile unsigned int *col_ssd)
        {
            unsigned int cache = 0;
            unsigned int cache2 = 0;

            for(int i = 1; i <= RADIUS; i++)
                cache += col_ssd[i];

            col_ssd_cache[0] = cache;

            __syncthreads();

            if (threadIdx.x < BLOCK_W - RADIUS)
                cache2 = col_ssd_cache[RADIUS];
            else
                for(int i = RADIUS + 1; i < (2 * RADIUS + 1); i++)
                    cache2 += col_ssd[i];

            return col_ssd[0] + cache + cache2;
        }

        template<int RADIUS>
        __device__ uint2 MinSSD(volatile unsigned int *col_ssd_cache, volatile unsigned int *col_ssd)
        {
            unsigned int ssd[N_DISPARITIES];

            //See above:  #define COL_SSD_SIZE (BLOCK_W + 2 * RADIUS)
            ssd[0] = CalcSSD<RADIUS>(col_ssd_cache, col_ssd + 0 * (BLOCK_W + 2 * RADIUS));
            __syncthreads();
            ssd[1] = CalcSSD<RADIUS>(col_ssd_cache, col_ssd + 1 * (BLOCK_W + 2 * RADIUS));
            __syncthreads();
            ssd[2] = CalcSSD<RADIUS>(col_ssd_cache, col_ssd + 2 * (BLOCK_W + 2 * RADIUS));
            __syncthreads();
            ssd[3] = CalcSSD<RADIUS>(col_ssd_cache, col_ssd + 3 * (BLOCK_W + 2 * RADIUS));
            __syncthreads();
            ssd[4] = CalcSSD<RADIUS>(col_ssd_cache, col_ssd + 4 * (BLOCK_W + 2 * RADIUS));
            __syncthreads();
            ssd[5] = CalcSSD<RADIUS>(col_ssd_cache, col_ssd + 5 * (BLOCK_W + 2 * RADIUS));
            __syncthreads();
            ssd[6] = CalcSSD<RADIUS>(col_ssd_cache, col_ssd + 6 * (BLOCK_W + 2 * RADIUS));
            __syncthreads();
            ssd[7] = CalcSSD<RADIUS>(col_ssd_cache, col_ssd + 7 * (BLOCK_W + 2 * RADIUS));

            int mssd = ::min(::min(::min(ssd[0], ssd[1]), ::min(ssd[4], ssd[5])), ::min(::min(ssd[2], ssd[3]), ::min(ssd[6], ssd[7])));

            int bestIdx = 0;
            for (int i = 0; i < N_DISPARITIES; i++)
            {
                if (mssd == ssd[i])
                    bestIdx = i;
            }

            return make_uint2(mssd, bestIdx);
        }

        template<int RADIUS>
        __device__ void StepDown(int idx1, int idx2, unsigned char* imageL, unsigned char* imageR, int d, volatile unsigned int *col_ssd)
        {
            unsigned char leftPixel1;
            unsigned char leftPixel2;
            unsigned char rightPixel1[8];
            unsigned char rightPixel2[8];
            unsigned int diff1, diff2;

            leftPixel1 = imageL[idx1];
            leftPixel2 = imageL[idx2];

            idx1 = idx1 - d;
            idx2 = idx2 - d;

            rightPixel1[7] = imageR[idx1 - 7];
            rightPixel1[0] = imageR[idx1 - 0];
            rightPixel1[1] = imageR[idx1 - 1];
            rightPixel1[2] = imageR[idx1 - 2];
            rightPixel1[3] = imageR[idx1 - 3];
            rightPixel1[4] = imageR[idx1 - 4];
            rightPixel1[5] = imageR[idx1 - 5];
            rightPixel1[6] = imageR[idx1 - 6];

            rightPixel2[7] = imageR[idx2 - 7];
            rightPixel2[0] = imageR[idx2 - 0];
            rightPixel2[1] = imageR[idx2 - 1];
            rightPixel2[2] = imageR[idx2 - 2];
            rightPixel2[3] = imageR[idx2 - 3];
            rightPixel2[4] = imageR[idx2 - 4];
            rightPixel2[5] = imageR[idx2 - 5];
            rightPixel2[6] = imageR[idx2 - 6];

            //See above:  #define COL_SSD_SIZE (BLOCK_W + 2 * RADIUS)
            diff1 = leftPixel1 - rightPixel1[0];
            diff2 = leftPixel2 - rightPixel2[0];
            col_ssd[0 * (BLOCK_W + 2 * RADIUS)] += SQ(diff2) - SQ(diff1);

            diff1 = leftPixel1 - rightPixel1[1];
            diff2 = leftPixel2 - rightPixel2[1];
            col_ssd[1 * (BLOCK_W + 2 * RADIUS)] += SQ(diff2) - SQ(diff1);

            diff1 = leftPixel1 - rightPixel1[2];
            diff2 = leftPixel2 - rightPixel2[2];
            col_ssd[2 * (BLOCK_W + 2 * RADIUS)] += SQ(diff2) - SQ(diff1);

            diff1 = leftPixel1 - rightPixel1[3];
            diff2 = leftPixel2 - rightPixel2[3];
            col_ssd[3 * (BLOCK_W + 2 * RADIUS)] += SQ(diff2) - SQ(diff1);

            diff1 = leftPixel1 - rightPixel1[4];
            diff2 = leftPixel2 - rightPixel2[4];
            col_ssd[4 * (BLOCK_W + 2 * RADIUS)] += SQ(diff2) - SQ(diff1);

            diff1 = leftPixel1 - rightPixel1[5];
            diff2 = leftPixel2 - rightPixel2[5];
            col_ssd[5 * (BLOCK_W + 2 * RADIUS)] += SQ(diff2) - SQ(diff1);

            diff1 = leftPixel1 - rightPixel1[6];
            diff2 = leftPixel2 - rightPixel2[6];
            col_ssd[6 * (BLOCK_W + 2 * RADIUS)] += SQ(diff2) - SQ(diff1);

            diff1 = leftPixel1 - rightPixel1[7];
            diff2 = leftPixel2 - rightPixel2[7];
            col_ssd[7 * (BLOCK_W + 2 * RADIUS)] += SQ(diff2) - SQ(diff1);
        }

        template<int RADIUS>
        __device__ void InitColSSD(int x_tex, int y_tex, int im_pitch, unsigned char* imageL, unsigned char* imageR, int d, volatile unsigned int *col_ssd)
        {
            unsigned char leftPixel1;
            int idx;
            unsigned int diffa[] = {0, 0, 0, 0, 0, 0, 0, 0};

            for(int i = 0; i < (2 * RADIUS + 1); i++)
            {
                idx = y_tex * im_pitch + x_tex;
                leftPixel1 = imageL[idx];
                idx = idx - d;

                diffa[0] += SQ(leftPixel1 - imageR[idx - 0]);
                diffa[1] += SQ(leftPixel1 - imageR[idx - 1]);
                diffa[2] += SQ(leftPixel1 - imageR[idx - 2]);
                diffa[3] += SQ(leftPixel1 - imageR[idx - 3]);
                diffa[4] += SQ(leftPixel1 - imageR[idx - 4]);
                diffa[5] += SQ(leftPixel1 - imageR[idx - 5]);
                diffa[6] += SQ(leftPixel1 - imageR[idx - 6]);
                diffa[7] += SQ(leftPixel1 - imageR[idx - 7]);

                y_tex += 1;
            }
            //See above:  #define COL_SSD_SIZE (BLOCK_W + 2 * RADIUS)
            col_ssd[0 * (BLOCK_W + 2 * RADIUS)] = diffa[0];
            col_ssd[1 * (BLOCK_W + 2 * RADIUS)] = diffa[1];
            col_ssd[2 * (BLOCK_W + 2 * RADIUS)] = diffa[2];
            col_ssd[3 * (BLOCK_W + 2 * RADIUS)] = diffa[3];
            col_ssd[4 * (BLOCK_W + 2 * RADIUS)] = diffa[4];
            col_ssd[5 * (BLOCK_W + 2 * RADIUS)] = diffa[5];
            col_ssd[6 * (BLOCK_W + 2 * RADIUS)] = diffa[6];
            col_ssd[7 * (BLOCK_W + 2 * RADIUS)] = diffa[7];
        }

        template<int RADIUS>
        __global__ void stereoKernel(unsigned char *left, unsigned char *right, size_t img_step, PtrStepb disp, int maxdisp)
        {
            extern __shared__ unsigned int col_ssd_cache[];
            volatile unsigned int *col_ssd = col_ssd_cache + BLOCK_W + threadIdx.x;
            volatile unsigned int *col_ssd_extra = threadIdx.x < (2 * RADIUS) ? col_ssd + BLOCK_W : 0;  //#define N_DIRTY_PIXELS (2 * RADIUS)

            //#define X (blockIdx.x * BLOCK_W + threadIdx.x + STEREO_MAXD)
            int X = (blockIdx.x * BLOCK_W + threadIdx.x + maxdisp + RADIUS);
            //#define Y (__mul24(blockIdx.y, ROWSperTHREAD) + RADIUS)
            #define Y (blockIdx.y * ROWSperTHREAD + RADIUS)
            //int Y = blockIdx.y * ROWSperTHREAD + RADIUS;

            unsigned int* minSSDImage = cminSSDImage + X + Y * cminSSD_step;
            unsigned char* disparImage = disp.data + X + Y * disp.step;
         /*   if (X < cwidth)
            {
                unsigned int *minSSDImage_end = minSSDImage + min(ROWSperTHREAD, cheight - Y) * minssd_step;
                for(uint *ptr = minSSDImage; ptr != minSSDImage_end; ptr += minssd_step )
                    *ptr = 0xFFFFFFFF;
            }*/
            int end_row = ::min(ROWSperTHREAD, cheight - Y - RADIUS);
            int y_tex;
            int x_tex = X - RADIUS;

            if (x_tex >= cwidth)
                return;

            for(int d = STEREO_MIND; d < maxdisp; d += STEREO_DISP_STEP)
            {
                y_tex = Y - RADIUS;

                InitColSSD<RADIUS>(x_tex, y_tex, img_step, left, right, d, col_ssd);

                if (col_ssd_extra > 0)
                    if (x_tex + BLOCK_W < cwidth)
                        InitColSSD<RADIUS>(x_tex + BLOCK_W, y_tex, img_step, left, right, d, col_ssd_extra);

                __syncthreads(); //before MinSSD function

                if (X < cwidth - RADIUS && Y < cheight - RADIUS)
                {
                    uint2 minSSD = MinSSD<RADIUS>(col_ssd_cache + threadIdx.x, col_ssd);
                    if (minSSD.x < minSSDImage[0])
                    {
                        disparImage[0] = (unsigned char)(d + minSSD.y);
                        minSSDImage[0] = minSSD.x;
                    }
                }

                for(int row = 1; row < end_row; row++)
                {
                    int idx1 = y_tex * img_step + x_tex;
                    int idx2 = (y_tex + (2 * RADIUS + 1)) * img_step + x_tex;

                    __syncthreads();

                    StepDown<RADIUS>(idx1, idx2, left, right, d, col_ssd);

                    if (col_ssd_extra)
                        if (x_tex + BLOCK_W < cwidth)
                            StepDown<RADIUS>(idx1, idx2, left + BLOCK_W, right + BLOCK_W, d, col_ssd_extra);

                    y_tex += 1;

                    __syncthreads(); //before MinSSD function

                    if (X < cwidth - RADIUS && row < cheight - RADIUS - Y)
                    {
                        int idx = row * cminSSD_step;
                        uint2 minSSD = MinSSD<RADIUS>(col_ssd_cache + threadIdx.x, col_ssd);
                        if (minSSD.x < minSSDImage[idx])
                        {
                            disparImage[disp.step * row] = (unsigned char)(d + minSSD.y);
                            minSSDImage[idx] = minSSD.x;
                        }
                    }
                } // for row loop
            } // for d loop
        }


        template<int RADIUS> void kernel_caller(const PtrStepSzb& left, const PtrStepSzb& right, const PtrStepSzb& disp, int maxdisp, cudaStream_t & stream)
        {
            dim3 grid(1,1,1);
            dim3 threads(BLOCK_W, 1, 1);

            grid.x = divUp(left.cols - maxdisp - 2 * RADIUS, BLOCK_W);
            grid.y = divUp(left.rows - 2 * RADIUS, ROWSperTHREAD);

            //See above:  #define COL_SSD_SIZE (BLOCK_W + 2 * RADIUS)
            size_t smem_size = (BLOCK_W + N_DISPARITIES * (BLOCK_W + 2 * RADIUS)) * sizeof(unsigned int);

            stereoKernel<RADIUS><<<grid, threads, smem_size, stream>>>(left.data, right.data, left.step, disp, maxdisp);
            cudaSafeCall( cudaGetLastError() );

            if (stream == 0)
                cudaSafeCall( cudaDeviceSynchronize() );
        };

        typedef void (*kernel_caller_t)(const PtrStepSzb& left, const PtrStepSzb& right, const PtrStepSzb& disp, int maxdisp, cudaStream_t & stream);

wester committed
333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
#ifdef OPENCV_TINY_GPU_MODULE
        const static kernel_caller_t callers[] =
        {
            0,
            kernel_caller< 1>,
            kernel_caller< 2>,
            kernel_caller< 3>,
            kernel_caller< 4>,
            kernel_caller< 5>,
            0/*kernel_caller< 6>*/,
            0/*kernel_caller< 7>*/,
            0/*kernel_caller< 8>*/,
            kernel_caller< 9>,
            0/*kernel_caller<10>*/,
            0/*kernel_caller<11>*/,
            0/*kernel_caller<12>*/,
            0/*kernel_caller<13>*/,
            0/*kernel_caller<14>*/,
            kernel_caller<15>,
            0/*kernel_caller<16>*/,
            0/*kernel_caller<17>*/,
            0/*kernel_caller<18>*/,
            0/*kernel_caller<19>*/,
            0/*kernel_caller<20>*/,
            0/*kernel_caller<21>*/,
            0/*kernel_caller<22>*/,
            0/*kernel_caller<23>*/,
            0/*kernel_caller<24>*/,
            0/*kernel_caller<25>*/,
        };
#else
wester committed
364 365 366 367 368 369 370 371 372
        const static kernel_caller_t callers[] =
        {
            0,
            kernel_caller< 1>, kernel_caller< 2>, kernel_caller< 3>, kernel_caller< 4>, kernel_caller< 5>,
            kernel_caller< 6>, kernel_caller< 7>, kernel_caller< 8>, kernel_caller< 9>, kernel_caller<10>,
            kernel_caller<11>, kernel_caller<12>, kernel_caller<13>, kernel_caller<14>, kernel_caller<15>,
            kernel_caller<16>, kernel_caller<17>, kernel_caller<18>, kernel_caller<19>, kernel_caller<20>,
            kernel_caller<21>, kernel_caller<22>, kernel_caller<23>, kernel_caller<24>, kernel_caller<25>
        };
wester committed
373 374
#endif

wester committed
375 376
        const int calles_num = sizeof(callers)/sizeof(callers[0]);

wester committed
377
        void stereoBM_GPU(const PtrStepSzb& left, const PtrStepSzb& right, const PtrStepSzb& disp, int maxdisp, int winsz, const PtrStepSz<unsigned int>& minSSD_buf, cudaStream_t& stream)
wester committed
378 379 380
        {
            int winsz2 = winsz >> 1;

wester committed
381 382
            if (winsz2 == 0 || winsz2 >= calles_num || callers[winsz2] == 0)
                cv::gpu::error("Unsupported window size", __FILE__, __LINE__, "stereoBM_GPU");
wester committed
383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567

            //cudaSafeCall( cudaFuncSetCacheConfig(&stereoKernel, cudaFuncCachePreferL1) );
            //cudaSafeCall( cudaFuncSetCacheConfig(&stereoKernel, cudaFuncCachePreferShared) );

            cudaSafeCall( cudaMemset2D(disp.data, disp.step, 0, disp.cols, disp.rows) );
            cudaSafeCall( cudaMemset2D(minSSD_buf.data, minSSD_buf.step, 0xFF, minSSD_buf.cols * minSSD_buf.elemSize(), disp.rows) );

            cudaSafeCall( cudaMemcpyToSymbol( cwidth, &left.cols, sizeof(left.cols) ) );
            cudaSafeCall( cudaMemcpyToSymbol( cheight, &left.rows, sizeof(left.rows) ) );
            cudaSafeCall( cudaMemcpyToSymbol( cminSSDImage, &minSSD_buf.data, sizeof(minSSD_buf.data) ) );

            size_t minssd_step = minSSD_buf.step/minSSD_buf.elemSize();
            cudaSafeCall( cudaMemcpyToSymbol( cminSSD_step,  &minssd_step, sizeof(minssd_step) ) );

            callers[winsz2](left, right, disp, maxdisp, stream);
        }

        //////////////////////////////////////////////////////////////////////////////////////////////////
        /////////////////////////////////////// Sobel Prefiler ///////////////////////////////////////////
        //////////////////////////////////////////////////////////////////////////////////////////////////

        texture<unsigned char, 2, cudaReadModeElementType> texForSobel;

        __global__ void prefilter_kernel(PtrStepSzb output, int prefilterCap)
        {
            int x = blockDim.x * blockIdx.x + threadIdx.x;
            int y = blockDim.y * blockIdx.y + threadIdx.y;

            if (x < output.cols && y < output.rows)
            {
                int conv = (int)tex2D(texForSobel, x - 1, y - 1) * (-1) + (int)tex2D(texForSobel, x + 1, y - 1) * (1) +
                           (int)tex2D(texForSobel, x - 1, y    ) * (-2) + (int)tex2D(texForSobel, x + 1, y    ) * (2) +
                           (int)tex2D(texForSobel, x - 1, y + 1) * (-1) + (int)tex2D(texForSobel, x + 1, y + 1) * (1);


                conv = ::min(::min(::max(-prefilterCap, conv), prefilterCap) + prefilterCap, 255);
                output.ptr(y)[x] = conv & 0xFF;
            }
        }

        void prefilter_xsobel(const PtrStepSzb& input, const PtrStepSzb& output, int prefilterCap, cudaStream_t & stream)
        {
            cudaChannelFormatDesc desc = cudaCreateChannelDesc<unsigned char>();
            cudaSafeCall( cudaBindTexture2D( 0, texForSobel, input.data, desc, input.cols, input.rows, input.step ) );

            dim3 threads(16, 16, 1);
            dim3 grid(1, 1, 1);

            grid.x = divUp(input.cols, threads.x);
            grid.y = divUp(input.rows, threads.y);

            prefilter_kernel<<<grid, threads, 0, stream>>>(output, prefilterCap);
            cudaSafeCall( cudaGetLastError() );

            if (stream == 0)
                cudaSafeCall( cudaDeviceSynchronize() );

            cudaSafeCall( cudaUnbindTexture (texForSobel ) );
        }


        //////////////////////////////////////////////////////////////////////////////////////////////////
        /////////////////////////////////// Textureness filtering ////////////////////////////////////////
        //////////////////////////////////////////////////////////////////////////////////////////////////

        texture<unsigned char, 2, cudaReadModeNormalizedFloat> texForTF;

        __device__ __forceinline__ float sobel(int x, int y)
        {
            float conv = tex2D(texForTF, x - 1, y - 1) * (-1) + tex2D(texForTF, x + 1, y - 1) * (1) +
                         tex2D(texForTF, x - 1, y    ) * (-2) + tex2D(texForTF, x + 1, y    ) * (2) +
                         tex2D(texForTF, x - 1, y + 1) * (-1) + tex2D(texForTF, x + 1, y + 1) * (1);
            return fabs(conv);
        }

        __device__ float CalcSums(float *cols, float *cols_cache, int winsz)
        {
            float cache = 0;
            float cache2 = 0;
            int winsz2 = winsz/2;

            for(int i = 1; i <= winsz2; i++)
                cache += cols[i];

            cols_cache[0] = cache;

            __syncthreads();

            if (threadIdx.x < blockDim.x - winsz2)
                cache2 = cols_cache[winsz2];
            else
                for(int i = winsz2 + 1; i < winsz; i++)
                    cache2 += cols[i];

            return cols[0] + cache + cache2;
        }

        #define RpT (2 * ROWSperTHREAD)  // got experimentally

        __global__ void textureness_kernel(PtrStepSzb disp, int winsz, float threshold)
        {
            int winsz2 = winsz/2;
            int n_dirty_pixels = (winsz2) * 2;

            extern __shared__ float cols_cache[];
            float *cols = cols_cache + blockDim.x + threadIdx.x;
            float *cols_extra = threadIdx.x < n_dirty_pixels ? cols + blockDim.x : 0;

            int x = blockIdx.x * blockDim.x + threadIdx.x;
            int beg_row = blockIdx.y * RpT;
            int end_row = ::min(beg_row + RpT, disp.rows);

            if (x < disp.cols)
            {
                int y = beg_row;

                float sum = 0;
                float sum_extra = 0;

                for(int i = y - winsz2; i <= y + winsz2; ++i)
                {
                    sum += sobel(x - winsz2, i);
                    if (cols_extra)
                        sum_extra += sobel(x + blockDim.x - winsz2, i);
                }
                *cols = sum;
                if (cols_extra)
                    *cols_extra = sum_extra;

                __syncthreads();

                float sum_win = CalcSums(cols, cols_cache + threadIdx.x, winsz) * 255;
                if (sum_win < threshold)
                    disp.data[y * disp.step + x] = 0;

                __syncthreads();

                for(int y = beg_row + 1; y < end_row; ++y)
                {
                    sum = sum - sobel(x - winsz2, y - winsz2 - 1) + sobel(x - winsz2, y + winsz2);
                    *cols = sum;

                    if (cols_extra)
                    {
                        sum_extra = sum_extra - sobel(x + blockDim.x - winsz2, y - winsz2 - 1) + sobel(x + blockDim.x - winsz2, y + winsz2);
                        *cols_extra = sum_extra;
                    }

                    __syncthreads();
                    float sum_win = CalcSums(cols, cols_cache + threadIdx.x, winsz) * 255;
                    if (sum_win < threshold)
                        disp.data[y * disp.step + x] = 0;

                    __syncthreads();
                }
            }
        }

        void postfilter_textureness(const PtrStepSzb& input, int winsz, float avgTexturenessThreshold, const PtrStepSzb& disp, cudaStream_t & stream)
        {
            avgTexturenessThreshold *= winsz * winsz;

            texForTF.filterMode     = cudaFilterModeLinear;
            texForTF.addressMode[0] = cudaAddressModeWrap;
            texForTF.addressMode[1] = cudaAddressModeWrap;

            cudaChannelFormatDesc desc = cudaCreateChannelDesc<unsigned char>();
            cudaSafeCall( cudaBindTexture2D( 0, texForTF, input.data, desc, input.cols, input.rows, input.step ) );

            dim3 threads(128, 1, 1);
            dim3 grid(1, 1, 1);

            grid.x = divUp(input.cols, threads.x);
            grid.y = divUp(input.rows, RpT);

            size_t smem_size = (threads.x + threads.x + (winsz/2) * 2 ) * sizeof(float);
            textureness_kernel<<<grid, threads, smem_size, stream>>>(disp, winsz, avgTexturenessThreshold);
            cudaSafeCall( cudaGetLastError() );

            if (stream == 0)
                cudaSafeCall( cudaDeviceSynchronize() );

            cudaSafeCall( cudaUnbindTexture (texForTF) );
        }
    } // namespace stereobm
wester committed
568
}}} // namespace cv { namespace gpu { namespace device
wester committed
569 570 571


#endif /* CUDA_DISABLER */