jdcoefct.c 25.2 KB
Newer Older
wester committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
/*
 * jdcoefct.c
 *
 * Copyright (C) 1994-1997, Thomas G. Lane.
 * This file is part of the Independent JPEG Group's software.
 * For conditions of distribution and use, see the accompanying README file.
 *
 * This file contains the coefficient buffer controller for decompression.
 * This controller is the top level of the JPEG decompressor proper.
 * The coefficient buffer lies between entropy decoding and inverse-DCT steps.
 *
 * In buffered-image mode, this controller is the interface between
 * input-oriented processing and output-oriented processing.
 * Also, the input side (only) is used when reading a file for transcoding.
 */

#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"

/* Block smoothing is only applicable for progressive JPEG, so: */
#ifndef D_PROGRESSIVE_SUPPORTED
#undef BLOCK_SMOOTHING_SUPPORTED
#endif

/* Private buffer controller object */

typedef struct {
  struct jpeg_d_coef_controller pub; /* public fields */

  /* These variables keep track of the current location of the input side. */
  /* cinfo->input_iMCU_row is also used for this. */
  JDIMENSION MCU_ctr;		/* counts MCUs processed in current row */
  int MCU_vert_offset;		/* counts MCU rows within iMCU row */
  int MCU_rows_per_iMCU_row;	/* number of such rows needed */

  /* The output side's location is represented by cinfo->output_iMCU_row. */

  /* In single-pass modes, it's sufficient to buffer just one MCU.
   * We allocate a workspace of D_MAX_BLOCKS_IN_MCU coefficient blocks,
   * and let the entropy decoder write into that workspace each time.
   * (On 80x86, the workspace is FAR even though it's not really very big;
   * this is to keep the module interfaces unchanged when a large coefficient
   * buffer is necessary.)
   * In multi-pass modes, this array points to the current MCU's blocks
   * within the virtual arrays; it is used only by the input side.
   */
  JBLOCKROW MCU_buffer[D_MAX_BLOCKS_IN_MCU];

#ifdef D_MULTISCAN_FILES_SUPPORTED
  /* In multi-pass modes, we need a virtual block array for each component. */
  jvirt_barray_ptr whole_image[MAX_COMPONENTS];
#endif

#ifdef BLOCK_SMOOTHING_SUPPORTED
  /* When doing block smoothing, we latch coefficient Al values here */
  int * coef_bits_latch;
#define SAVED_COEFS  6		/* we save coef_bits[0..5] */
#endif
} my_coef_controller;

typedef my_coef_controller * my_coef_ptr;

/* Forward declarations */
METHODDEF(int) decompress_onepass
wester committed
66
    JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf));
wester committed
67 68
#ifdef D_MULTISCAN_FILES_SUPPORTED
METHODDEF(int) decompress_data
wester committed
69
    JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf));
wester committed
70 71 72 73
#endif
#ifdef BLOCK_SMOOTHING_SUPPORTED
LOCAL(boolean) smoothing_ok JPP((j_decompress_ptr cinfo));
METHODDEF(int) decompress_smooth_data
wester committed
74
    JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf));
wester committed
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
#endif


LOCAL(void)
start_iMCU_row (j_decompress_ptr cinfo)
/* Reset within-iMCU-row counters for a new row (input side) */
{
  my_coef_ptr coef = (my_coef_ptr) cinfo->coef;

  /* In an interleaved scan, an MCU row is the same as an iMCU row.
   * In a noninterleaved scan, an iMCU row has v_samp_factor MCU rows.
   * But at the bottom of the image, process only what's left.
   */
  if (cinfo->comps_in_scan > 1) {
    coef->MCU_rows_per_iMCU_row = 1;
  } else {
    if (cinfo->input_iMCU_row < (cinfo->total_iMCU_rows-1))
      coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->v_samp_factor;
    else
      coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->last_row_height;
  }

  coef->MCU_ctr = 0;
  coef->MCU_vert_offset = 0;
}


/*
 * Initialize for an input processing pass.
 */

METHODDEF(void)
start_input_pass (j_decompress_ptr cinfo)
{
  cinfo->input_iMCU_row = 0;
  start_iMCU_row(cinfo);
}


/*
 * Initialize for an output processing pass.
 */

METHODDEF(void)
start_output_pass (j_decompress_ptr cinfo)
{
#ifdef BLOCK_SMOOTHING_SUPPORTED
  my_coef_ptr coef = (my_coef_ptr) cinfo->coef;

  /* If multipass, check to see whether to use block smoothing on this pass */
  if (coef->pub.coef_arrays != NULL) {
    if (cinfo->do_block_smoothing && smoothing_ok(cinfo))
      coef->pub.decompress_data = decompress_smooth_data;
    else
      coef->pub.decompress_data = decompress_data;
  }
#endif
  cinfo->output_iMCU_row = 0;
}


/*
 * Decompress and return some data in the single-pass case.
 * Always attempts to emit one fully interleaved MCU row ("iMCU" row).
 * Input and output must run in lockstep since we have only a one-MCU buffer.
 * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED.
 *
 * NB: output_buf contains a plane for each component in image,
 * which we index according to the component's SOF position.
 */

METHODDEF(int)
decompress_onepass (j_decompress_ptr cinfo, JSAMPIMAGE output_buf)
{
  my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
  JDIMENSION MCU_col_num;	/* index of current MCU within row */
  JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1;
  JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
  int blkn, ci, xindex, yindex, yoffset, useful_width;
  JSAMPARRAY output_ptr;
  JDIMENSION start_col, output_col;
  jpeg_component_info *compptr;
  inverse_DCT_method_ptr inverse_DCT;

  /* Loop to process as much as one whole iMCU row */
  for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
       yoffset++) {
    for (MCU_col_num = coef->MCU_ctr; MCU_col_num <= last_MCU_col;
wester committed
163
     MCU_col_num++) {
wester committed
164
      /* Try to fetch an MCU.  Entropy decoder expects buffer to be zeroed. */
wester committed
165 166
      jzero_far((void FAR *) coef->MCU_buffer[0],
        (size_t) (cinfo->blocks_in_MCU * SIZEOF(JBLOCK)));
wester committed
167
      if (! (*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) {
wester committed
168 169 170 171
    /* Suspension forced; update state counters and exit */
    coef->MCU_vert_offset = yoffset;
    coef->MCU_ctr = MCU_col_num;
    return JPEG_SUSPENDED;
wester committed
172 173 174 175 176 177 178 179
      }
      /* Determine where data should go in output_buf and do the IDCT thing.
       * We skip dummy blocks at the right and bottom edges (but blkn gets
       * incremented past them!).  Note the inner loop relies on having
       * allocated the MCU_buffer[] blocks sequentially.
       */
      blkn = 0;			/* index of current DCT block within MCU */
      for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
wester committed
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
    compptr = cinfo->cur_comp_info[ci];
    /* Don't bother to IDCT an uninteresting component. */
    if (! compptr->component_needed) {
      blkn += compptr->MCU_blocks;
      continue;
    }
    inverse_DCT = cinfo->idct->inverse_DCT[compptr->component_index];
    useful_width = (MCU_col_num < last_MCU_col) ? compptr->MCU_width
                            : compptr->last_col_width;
    output_ptr = output_buf[compptr->component_index] +
      yoffset * compptr->DCT_scaled_size;
    start_col = MCU_col_num * compptr->MCU_sample_width;
    for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
      if (cinfo->input_iMCU_row < last_iMCU_row ||
          yoffset+yindex < compptr->last_row_height) {
        output_col = start_col;
        for (xindex = 0; xindex < useful_width; xindex++) {
          (*inverse_DCT) (cinfo, compptr,
                  (JCOEFPTR) coef->MCU_buffer[blkn+xindex],
                  output_ptr, output_col);
          output_col += compptr->DCT_scaled_size;
wester committed
201 202
        }
      }
wester committed
203 204 205 206
      blkn += compptr->MCU_width;
      output_ptr += compptr->DCT_scaled_size;
    }
      }
wester committed
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
    }
    /* Completed an MCU row, but perhaps not an iMCU row */
    coef->MCU_ctr = 0;
  }
  /* Completed the iMCU row, advance counters for next one */
  cinfo->output_iMCU_row++;
  if (++(cinfo->input_iMCU_row) < cinfo->total_iMCU_rows) {
    start_iMCU_row(cinfo);
    return JPEG_ROW_COMPLETED;
  }
  /* Completed the scan */
  (*cinfo->inputctl->finish_input_pass) (cinfo);
  return JPEG_SCAN_COMPLETED;
}


/*
 * Dummy consume-input routine for single-pass operation.
 */

METHODDEF(int)
dummy_consume_data (j_decompress_ptr cinfo)
{
  return JPEG_SUSPENDED;	/* Always indicate nothing was done */
}


#ifdef D_MULTISCAN_FILES_SUPPORTED

/*
 * Consume input data and store it in the full-image coefficient buffer.
 * We read as much as one fully interleaved MCU row ("iMCU" row) per call,
 * ie, v_samp_factor block rows for each component in the scan.
 * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED.
 */

METHODDEF(int)
consume_data (j_decompress_ptr cinfo)
{
  my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
  JDIMENSION MCU_col_num;	/* index of current MCU within row */
  int blkn, ci, xindex, yindex, yoffset;
  JDIMENSION start_col;
  JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN];
  JBLOCKROW buffer_ptr;
  jpeg_component_info *compptr;

  /* Align the virtual buffers for the components used in this scan. */
  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
    compptr = cinfo->cur_comp_info[ci];
    buffer[ci] = (*cinfo->mem->access_virt_barray)
      ((j_common_ptr) cinfo, coef->whole_image[compptr->component_index],
       cinfo->input_iMCU_row * compptr->v_samp_factor,
       (JDIMENSION) compptr->v_samp_factor, TRUE);
    /* Note: entropy decoder expects buffer to be zeroed,
     * but this is handled automatically by the memory manager
     * because we requested a pre-zeroed array.
     */
  }

  /* Loop to process one whole iMCU row */
  for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
       yoffset++) {
    for (MCU_col_num = coef->MCU_ctr; MCU_col_num < cinfo->MCUs_per_row;
wester committed
271
     MCU_col_num++) {
wester committed
272 273 274
      /* Construct list of pointers to DCT blocks belonging to this MCU */
      blkn = 0;			/* index of current DCT block within MCU */
      for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
wester committed
275 276 277 278 279 280 281 282
    compptr = cinfo->cur_comp_info[ci];
    start_col = MCU_col_num * compptr->MCU_width;
    for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
      buffer_ptr = buffer[ci][yindex+yoffset] + start_col;
      for (xindex = 0; xindex < compptr->MCU_width; xindex++) {
        coef->MCU_buffer[blkn++] = buffer_ptr++;
      }
    }
wester committed
283 284 285
      }
      /* Try to fetch the MCU. */
      if (! (*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) {
wester committed
286 287 288 289
    /* Suspension forced; update state counters and exit */
    coef->MCU_vert_offset = yoffset;
    coef->MCU_ctr = MCU_col_num;
    return JPEG_SUSPENDED;
wester committed
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
      }
    }
    /* Completed an MCU row, but perhaps not an iMCU row */
    coef->MCU_ctr = 0;
  }
  /* Completed the iMCU row, advance counters for next one */
  if (++(cinfo->input_iMCU_row) < cinfo->total_iMCU_rows) {
    start_iMCU_row(cinfo);
    return JPEG_ROW_COMPLETED;
  }
  /* Completed the scan */
  (*cinfo->inputctl->finish_input_pass) (cinfo);
  return JPEG_SCAN_COMPLETED;
}


/*
 * Decompress and return some data in the multi-pass case.
 * Always attempts to emit one fully interleaved MCU row ("iMCU" row).
 * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED.
 *
 * NB: output_buf contains a plane for each component in image.
 */

METHODDEF(int)
decompress_data (j_decompress_ptr cinfo, JSAMPIMAGE output_buf)
{
  my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
  JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
  JDIMENSION block_num;
  int ci, block_row, block_rows;
  JBLOCKARRAY buffer;
  JBLOCKROW buffer_ptr;
  JSAMPARRAY output_ptr;
  JDIMENSION output_col;
  jpeg_component_info *compptr;
  inverse_DCT_method_ptr inverse_DCT;

  /* Force some input to be done if we are getting ahead of the input. */
  while (cinfo->input_scan_number < cinfo->output_scan_number ||
wester committed
330 331
     (cinfo->input_scan_number == cinfo->output_scan_number &&
      cinfo->input_iMCU_row <= cinfo->output_iMCU_row)) {
wester committed
332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
    if ((*cinfo->inputctl->consume_input)(cinfo) == JPEG_SUSPENDED)
      return JPEG_SUSPENDED;
  }

  /* OK, output from the virtual arrays. */
  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
       ci++, compptr++) {
    /* Don't bother to IDCT an uninteresting component. */
    if (! compptr->component_needed)
      continue;
    /* Align the virtual buffer for this component. */
    buffer = (*cinfo->mem->access_virt_barray)
      ((j_common_ptr) cinfo, coef->whole_image[ci],
       cinfo->output_iMCU_row * compptr->v_samp_factor,
       (JDIMENSION) compptr->v_samp_factor, FALSE);
    /* Count non-dummy DCT block rows in this iMCU row. */
    if (cinfo->output_iMCU_row < last_iMCU_row)
      block_rows = compptr->v_samp_factor;
    else {
      /* NB: can't use last_row_height here; it is input-side-dependent! */
      block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor);
      if (block_rows == 0) block_rows = compptr->v_samp_factor;
    }
    inverse_DCT = cinfo->idct->inverse_DCT[ci];
    output_ptr = output_buf[ci];
    /* Loop over all DCT blocks to be processed. */
    for (block_row = 0; block_row < block_rows; block_row++) {
      buffer_ptr = buffer[block_row];
      output_col = 0;
      for (block_num = 0; block_num < compptr->width_in_blocks; block_num++) {
wester committed
362 363 364 365
    (*inverse_DCT) (cinfo, compptr, (JCOEFPTR) buffer_ptr,
            output_ptr, output_col);
    buffer_ptr++;
    output_col += compptr->DCT_scaled_size;
wester committed
366
      }
wester committed
367
      output_ptr += compptr->DCT_scaled_size;
wester committed
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
    }
  }

  if (++(cinfo->output_iMCU_row) < cinfo->total_iMCU_rows)
    return JPEG_ROW_COMPLETED;
  return JPEG_SCAN_COMPLETED;
}

#endif /* D_MULTISCAN_FILES_SUPPORTED */


#ifdef BLOCK_SMOOTHING_SUPPORTED

/*
 * This code applies interblock smoothing as described by section K.8
 * of the JPEG standard: the first 5 AC coefficients are estimated from
 * the DC values of a DCT block and its 8 neighboring blocks.
 * We apply smoothing only for progressive JPEG decoding, and only if
 * the coefficients it can estimate are not yet known to full precision.
 */

/* Natural-order array positions of the first 5 zigzag-order coefficients */
#define Q01_POS  1
#define Q10_POS  8
#define Q20_POS  16
#define Q11_POS  9
#define Q02_POS  2

/*
 * Determine whether block smoothing is applicable and safe.
 * We also latch the current states of the coef_bits[] entries for the
 * AC coefficients; otherwise, if the input side of the decompressor
 * advances into a new scan, we might think the coefficients are known
 * more accurately than they really are.
 */

LOCAL(boolean)
smoothing_ok (j_decompress_ptr cinfo)
{
  my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
  boolean smoothing_useful = FALSE;
  int ci, coefi;
  jpeg_component_info *compptr;
  JQUANT_TBL * qtable;
  int * coef_bits;
  int * coef_bits_latch;

  if (! cinfo->progressive_mode || cinfo->coef_bits == NULL)
    return FALSE;

  /* Allocate latch area if not already done */
  if (coef->coef_bits_latch == NULL)
    coef->coef_bits_latch = (int *)
      (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
wester committed
422 423
                  cinfo->num_components *
                  (SAVED_COEFS * SIZEOF(int)));
wester committed
424 425 426 427 428 429 430 431 432
  coef_bits_latch = coef->coef_bits_latch;

  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
       ci++, compptr++) {
    /* All components' quantization values must already be latched. */
    if ((qtable = compptr->quant_table) == NULL)
      return FALSE;
    /* Verify DC & first 5 AC quantizers are nonzero to avoid zero-divide. */
    if (qtable->quantval[0] == 0 ||
wester committed
433 434 435 436 437
    qtable->quantval[Q01_POS] == 0 ||
    qtable->quantval[Q10_POS] == 0 ||
    qtable->quantval[Q20_POS] == 0 ||
    qtable->quantval[Q11_POS] == 0 ||
    qtable->quantval[Q02_POS] == 0)
wester committed
438 439 440 441 442 443 444 445 446
      return FALSE;
    /* DC values must be at least partly known for all components. */
    coef_bits = cinfo->coef_bits[ci];
    if (coef_bits[0] < 0)
      return FALSE;
    /* Block smoothing is helpful if some AC coefficients remain inaccurate. */
    for (coefi = 1; coefi <= 5; coefi++) {
      coef_bits_latch[coefi] = coef_bits[coefi];
      if (coef_bits[coefi] != 0)
wester committed
447
    smoothing_useful = TRUE;
wester committed
448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
    }
    coef_bits_latch += SAVED_COEFS;
  }

  return smoothing_useful;
}


/*
 * Variant of decompress_data for use when doing block smoothing.
 */

METHODDEF(int)
decompress_smooth_data (j_decompress_ptr cinfo, JSAMPIMAGE output_buf)
{
  my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
  JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
  JDIMENSION block_num, last_block_column;
  int ci, block_row, block_rows, access_rows;
  JBLOCKARRAY buffer;
  JBLOCKROW buffer_ptr, prev_block_row, next_block_row;
  JSAMPARRAY output_ptr;
  JDIMENSION output_col;
  jpeg_component_info *compptr;
  inverse_DCT_method_ptr inverse_DCT;
  boolean first_row, last_row;
  JBLOCK workspace;
  int *coef_bits;
  JQUANT_TBL *quanttbl;
  INT32 Q00,Q01,Q02,Q10,Q11,Q20, num;
  int DC1,DC2,DC3,DC4,DC5,DC6,DC7,DC8,DC9;
  int Al, pred;

  /* Force some input to be done if we are getting ahead of the input. */
  while (cinfo->input_scan_number <= cinfo->output_scan_number &&
wester committed
483
     ! cinfo->inputctl->eoi_reached) {
wester committed
484 485 486 487 488 489 490 491
    if (cinfo->input_scan_number == cinfo->output_scan_number) {
      /* If input is working on current scan, we ordinarily want it to
       * have completed the current row.  But if input scan is DC,
       * we want it to keep one row ahead so that next block row's DC
       * values are up to date.
       */
      JDIMENSION delta = (cinfo->Ss == 0) ? 1 : 0;
      if (cinfo->input_iMCU_row > cinfo->output_iMCU_row+delta)
wester committed
492
    break;
wester committed
493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519
    }
    if ((*cinfo->inputctl->consume_input)(cinfo) == JPEG_SUSPENDED)
      return JPEG_SUSPENDED;
  }

  /* OK, output from the virtual arrays. */
  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
       ci++, compptr++) {
    /* Don't bother to IDCT an uninteresting component. */
    if (! compptr->component_needed)
      continue;
    /* Count non-dummy DCT block rows in this iMCU row. */
    if (cinfo->output_iMCU_row < last_iMCU_row) {
      block_rows = compptr->v_samp_factor;
      access_rows = block_rows * 2; /* this and next iMCU row */
      last_row = FALSE;
    } else {
      /* NB: can't use last_row_height here; it is input-side-dependent! */
      block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor);
      if (block_rows == 0) block_rows = compptr->v_samp_factor;
      access_rows = block_rows; /* this iMCU row only */
      last_row = TRUE;
    }
    /* Align the virtual buffer for this component. */
    if (cinfo->output_iMCU_row > 0) {
      access_rows += compptr->v_samp_factor; /* prior iMCU row too */
      buffer = (*cinfo->mem->access_virt_barray)
wester committed
520 521 522
    ((j_common_ptr) cinfo, coef->whole_image[ci],
     (cinfo->output_iMCU_row - 1) * compptr->v_samp_factor,
     (JDIMENSION) access_rows, FALSE);
wester committed
523 524 525 526
      buffer += compptr->v_samp_factor;	/* point to current iMCU row */
      first_row = FALSE;
    } else {
      buffer = (*cinfo->mem->access_virt_barray)
wester committed
527 528
    ((j_common_ptr) cinfo, coef->whole_image[ci],
     (JDIMENSION) 0, (JDIMENSION) access_rows, FALSE);
wester committed
529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545
      first_row = TRUE;
    }
    /* Fetch component-dependent info */
    coef_bits = coef->coef_bits_latch + (ci * SAVED_COEFS);
    quanttbl = compptr->quant_table;
    Q00 = quanttbl->quantval[0];
    Q01 = quanttbl->quantval[Q01_POS];
    Q10 = quanttbl->quantval[Q10_POS];
    Q20 = quanttbl->quantval[Q20_POS];
    Q11 = quanttbl->quantval[Q11_POS];
    Q02 = quanttbl->quantval[Q02_POS];
    inverse_DCT = cinfo->idct->inverse_DCT[ci];
    output_ptr = output_buf[ci];
    /* Loop over all DCT blocks to be processed. */
    for (block_row = 0; block_row < block_rows; block_row++) {
      buffer_ptr = buffer[block_row];
      if (first_row && block_row == 0)
wester committed
546
    prev_block_row = buffer_ptr;
wester committed
547
      else
wester committed
548
    prev_block_row = buffer[block_row-1];
wester committed
549
      if (last_row && block_row == block_rows-1)
wester committed
550
    next_block_row = buffer_ptr;
wester committed
551
      else
wester committed
552
    next_block_row = buffer[block_row+1];
wester committed
553 554 555 556 557 558 559 560 561
      /* We fetch the surrounding DC values using a sliding-register approach.
       * Initialize all nine here so as to do the right thing on narrow pics.
       */
      DC1 = DC2 = DC3 = (int) prev_block_row[0][0];
      DC4 = DC5 = DC6 = (int) buffer_ptr[0][0];
      DC7 = DC8 = DC9 = (int) next_block_row[0][0];
      output_col = 0;
      last_block_column = compptr->width_in_blocks - 1;
      for (block_num = 0; block_num <= last_block_column; block_num++) {
wester committed
562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657
    /* Fetch current DCT block into workspace so we can modify it. */
    jcopy_block_row(buffer_ptr, (JBLOCKROW) workspace, (JDIMENSION) 1);
    /* Update DC values */
    if (block_num < last_block_column) {
      DC3 = (int) prev_block_row[1][0];
      DC6 = (int) buffer_ptr[1][0];
      DC9 = (int) next_block_row[1][0];
    }
    /* Compute coefficient estimates per K.8.
     * An estimate is applied only if coefficient is still zero,
     * and is not known to be fully accurate.
     */
    /* AC01 */
    if ((Al=coef_bits[1]) != 0 && workspace[1] == 0) {
      num = 36 * Q00 * (DC4 - DC6);
      if (num >= 0) {
        pred = (int) (((Q01<<7) + num) / (Q01<<8));
        if (Al > 0 && pred >= (1<<Al))
          pred = (1<<Al)-1;
      } else {
        pred = (int) (((Q01<<7) - num) / (Q01<<8));
        if (Al > 0 && pred >= (1<<Al))
          pred = (1<<Al)-1;
        pred = -pred;
      }
      workspace[1] = (JCOEF) pred;
    }
    /* AC10 */
    if ((Al=coef_bits[2]) != 0 && workspace[8] == 0) {
      num = 36 * Q00 * (DC2 - DC8);
      if (num >= 0) {
        pred = (int) (((Q10<<7) + num) / (Q10<<8));
        if (Al > 0 && pred >= (1<<Al))
          pred = (1<<Al)-1;
      } else {
        pred = (int) (((Q10<<7) - num) / (Q10<<8));
        if (Al > 0 && pred >= (1<<Al))
          pred = (1<<Al)-1;
        pred = -pred;
      }
      workspace[8] = (JCOEF) pred;
    }
    /* AC20 */
    if ((Al=coef_bits[3]) != 0 && workspace[16] == 0) {
      num = 9 * Q00 * (DC2 + DC8 - 2*DC5);
      if (num >= 0) {
        pred = (int) (((Q20<<7) + num) / (Q20<<8));
        if (Al > 0 && pred >= (1<<Al))
          pred = (1<<Al)-1;
      } else {
        pred = (int) (((Q20<<7) - num) / (Q20<<8));
        if (Al > 0 && pred >= (1<<Al))
          pred = (1<<Al)-1;
        pred = -pred;
      }
      workspace[16] = (JCOEF) pred;
    }
    /* AC11 */
    if ((Al=coef_bits[4]) != 0 && workspace[9] == 0) {
      num = 5 * Q00 * (DC1 - DC3 - DC7 + DC9);
      if (num >= 0) {
        pred = (int) (((Q11<<7) + num) / (Q11<<8));
        if (Al > 0 && pred >= (1<<Al))
          pred = (1<<Al)-1;
      } else {
        pred = (int) (((Q11<<7) - num) / (Q11<<8));
        if (Al > 0 && pred >= (1<<Al))
          pred = (1<<Al)-1;
        pred = -pred;
      }
      workspace[9] = (JCOEF) pred;
    }
    /* AC02 */
    if ((Al=coef_bits[5]) != 0 && workspace[2] == 0) {
      num = 9 * Q00 * (DC4 + DC6 - 2*DC5);
      if (num >= 0) {
        pred = (int) (((Q02<<7) + num) / (Q02<<8));
        if (Al > 0 && pred >= (1<<Al))
          pred = (1<<Al)-1;
      } else {
        pred = (int) (((Q02<<7) - num) / (Q02<<8));
        if (Al > 0 && pred >= (1<<Al))
          pred = (1<<Al)-1;
        pred = -pred;
      }
      workspace[2] = (JCOEF) pred;
    }
    /* OK, do the IDCT */
    (*inverse_DCT) (cinfo, compptr, (JCOEFPTR) workspace,
            output_ptr, output_col);
    /* Advance for next column */
    DC1 = DC2; DC2 = DC3;
    DC4 = DC5; DC5 = DC6;
    DC7 = DC8; DC8 = DC9;
    buffer_ptr++, prev_block_row++, next_block_row++;
    output_col += compptr->DCT_scaled_size;
wester committed
658
      }
wester committed
659
      output_ptr += compptr->DCT_scaled_size;
wester committed
660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681
    }
  }

  if (++(cinfo->output_iMCU_row) < cinfo->total_iMCU_rows)
    return JPEG_ROW_COMPLETED;
  return JPEG_SCAN_COMPLETED;
}

#endif /* BLOCK_SMOOTHING_SUPPORTED */


/*
 * Initialize coefficient buffer controller.
 */

GLOBAL(void)
jinit_d_coef_controller (j_decompress_ptr cinfo, boolean need_full_buffer)
{
  my_coef_ptr coef;

  coef = (my_coef_ptr)
    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
wester committed
682
                SIZEOF(my_coef_controller));
wester committed
683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699
  cinfo->coef = (struct jpeg_d_coef_controller *) coef;
  coef->pub.start_input_pass = start_input_pass;
  coef->pub.start_output_pass = start_output_pass;
#ifdef BLOCK_SMOOTHING_SUPPORTED
  coef->coef_bits_latch = NULL;
#endif

  /* Create the coefficient buffer. */
  if (need_full_buffer) {
#ifdef D_MULTISCAN_FILES_SUPPORTED
    /* Allocate a full-image virtual array for each component, */
    /* padded to a multiple of samp_factor DCT blocks in each direction. */
    /* Note we ask for a pre-zeroed array. */
    int ci, access_rows;
    jpeg_component_info *compptr;

    for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
wester committed
700
     ci++, compptr++) {
wester committed
701 702 703 704
      access_rows = compptr->v_samp_factor;
#ifdef BLOCK_SMOOTHING_SUPPORTED
      /* If block smoothing could be used, need a bigger window */
      if (cinfo->progressive_mode)
wester committed
705
    access_rows *= 3;
wester committed
706 707
#endif
      coef->whole_image[ci] = (*cinfo->mem->request_virt_barray)
wester committed
708 709 710 711 712 713
    ((j_common_ptr) cinfo, JPOOL_IMAGE, TRUE,
     (JDIMENSION) jround_up((long) compptr->width_in_blocks,
                (long) compptr->h_samp_factor),
     (JDIMENSION) jround_up((long) compptr->height_in_blocks,
                (long) compptr->v_samp_factor),
     (JDIMENSION) access_rows);
wester committed
714 715 716 717 718 719 720 721 722 723 724 725 726 727
    }
    coef->pub.consume_data = consume_data;
    coef->pub.decompress_data = decompress_data;
    coef->pub.coef_arrays = coef->whole_image; /* link to virtual arrays */
#else
    ERREXIT(cinfo, JERR_NOT_COMPILED);
#endif
  } else {
    /* We only need a single-MCU buffer. */
    JBLOCKROW buffer;
    int i;

    buffer = (JBLOCKROW)
      (*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE,
wester committed
728
                  D_MAX_BLOCKS_IN_MCU * SIZEOF(JBLOCK));
wester committed
729 730 731 732 733 734 735 736
    for (i = 0; i < D_MAX_BLOCKS_IN_MCU; i++) {
      coef->MCU_buffer[i] = buffer + i;
    }
    coef->pub.consume_data = dummy_consume_data;
    coef->pub.decompress_data = decompress_onepass;
    coef->pub.coef_arrays = NULL; /* flag for no virtual arrays */
  }
}