lsh_index.h 16.4 KB
Newer Older
wester committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
/***********************************************************************
 * Software License Agreement (BSD License)
 *
 * Copyright 2008-2009  Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
 * Copyright 2008-2009  David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
 *
 * THE BSD LICENSE
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *************************************************************************/

/***********************************************************************
 * Author: Vincent Rabaud
 *************************************************************************/

#ifndef OPENCV_FLANN_LSH_INDEX_H_
#define OPENCV_FLANN_LSH_INDEX_H_

#include <algorithm>
#include <cassert>
#include <cstring>
#include <map>
#include <vector>

#include "general.h"
#include "nn_index.h"
#include "matrix.h"
#include "result_set.h"
#include "heap.h"
#include "lsh_table.h"
#include "allocator.h"
#include "random.h"
#include "saving.h"

namespace cvflann
{

struct LshIndexParams : public IndexParams
{
    LshIndexParams(unsigned int table_number = 12, unsigned int key_size = 20, unsigned int multi_probe_level = 2)
    {
        (* this)["algorithm"] = FLANN_INDEX_LSH;
        // The number of hash tables to use
        (*this)["table_number"] = table_number;
        // The length of the key in the hash tables
        (*this)["key_size"] = key_size;
        // Number of levels to use in multi-probe (0 for standard LSH)
        (*this)["multi_probe_level"] = multi_probe_level;
    }
};

/**
 * Randomized kd-tree index
 *
 * Contains the k-d trees and other information for indexing a set of points
 * for nearest-neighbor matching.
 */
template<typename Distance>
class LshIndex : public NNIndex<Distance>
{
public:
    typedef typename Distance::ElementType ElementType;
    typedef typename Distance::ResultType DistanceType;

    /** Constructor
     * @param input_data dataset with the input features
     * @param params parameters passed to the LSH algorithm
     * @param d the distance used
     */
    LshIndex(const Matrix<ElementType>& input_data, const IndexParams& params = LshIndexParams(),
             Distance d = Distance()) :
        dataset_(input_data), index_params_(params), distance_(d)
    {
        // cv::flann::IndexParams sets integer params as 'int', so it is used with get_param
        // in place of 'unsigned int'
        table_number_ = (unsigned int)get_param<int>(index_params_,"table_number",12);
        key_size_ = (unsigned int)get_param<int>(index_params_,"key_size",20);
        multi_probe_level_ = (unsigned int)get_param<int>(index_params_,"multi_probe_level",2);

        feature_size_ = (unsigned)dataset_.cols;
        fill_xor_mask(0, key_size_, multi_probe_level_, xor_masks_);
    }


    LshIndex(const LshIndex&);
    LshIndex& operator=(const LshIndex&);

wester committed
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
    /**
    * Implementation for the LSH addable indexes after that.
    * @param wholeData whole dataset with the input features
    * @param additionalData additional dataset with the input features
    */
    void addIndex(const Matrix<ElementType>& wholeData, const Matrix<ElementType>& additionalData)
    {
        tables_.resize(table_number_);
        for (unsigned int i = 0; i < table_number_; ++i) {
            lsh::LshTable<ElementType>& table = tables_[i];
            // Add the features to the table with indexed offset
            table.add((int)(wholeData.rows - additionalData.rows), additionalData);
        }
        dataset_ = wholeData;
    }

wester committed
123 124 125 126 127
    /**
     * Builds the index
     */
    void buildIndex()
    {
wester committed
128 129
        std::vector<size_t> indices(feature_size_ * CHAR_BIT);

wester committed
130 131
        tables_.resize(table_number_);
        for (unsigned int i = 0; i < table_number_; ++i) {
wester committed
132 133 134 135 136 137 138 139 140 141

            //re-initialize the random indices table that the LshTable will use to pick its sub-dimensions
            if( (indices.size() == feature_size_ * CHAR_BIT) || (indices.size() < key_size_) )
            {
              indices.resize( feature_size_ * CHAR_BIT );
              for (size_t j = 0; j < feature_size_ * CHAR_BIT; ++j)
                  indices[j] = j;
              std::random_shuffle(indices.begin(), indices.end());
            }

wester committed
142
            lsh::LshTable<ElementType>& table = tables_[i];
wester committed
143
            table = lsh::LshTable<ElementType>(feature_size_, key_size_, indices);
wester committed
144

wester committed
145 146
            // Add the features to the table with offset 0
            table.add(0, dataset_);
wester committed
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
        }
    }

    flann_algorithm_t getType() const
    {
        return FLANN_INDEX_LSH;
    }


    void saveIndex(FILE* stream)
    {
        save_value(stream,table_number_);
        save_value(stream,key_size_);
        save_value(stream,multi_probe_level_);
        save_value(stream, dataset_);
    }

    void loadIndex(FILE* stream)
    {
        load_value(stream, table_number_);
        load_value(stream, key_size_);
        load_value(stream, multi_probe_level_);
        load_value(stream, dataset_);
        // Building the index is so fast we can afford not storing it
        buildIndex();

        index_params_["algorithm"] = getType();
        index_params_["table_number"] = table_number_;
        index_params_["key_size"] = key_size_;
        index_params_["multi_probe_level"] = multi_probe_level_;
    }

    /**
     *  Returns size of index.
     */
    size_t size() const
    {
        return dataset_.rows;
    }

    /**
     * Returns the length of an index feature.
     */
    size_t veclen() const
    {
        return feature_size_;
    }

    /**
     * Computes the index memory usage
     * Returns: memory used by the index
     */
    int usedMemory() const
    {
        return (int)(dataset_.rows * sizeof(int));
    }


    IndexParams getParameters() const
    {
        return index_params_;
    }

    /**
     * \brief Perform k-nearest neighbor search
     * \param[in] queries The query points for which to find the nearest neighbors
     * \param[out] indices The indices of the nearest neighbors found
     * \param[out] dists Distances to the nearest neighbors found
     * \param[in] knn Number of nearest neighbors to return
     * \param[in] params Search parameters
     */
    virtual void knnSearch(const Matrix<ElementType>& queries, Matrix<int>& indices, Matrix<DistanceType>& dists, int knn, const SearchParams& params)
    {
        assert(queries.cols == veclen());
        assert(indices.rows >= queries.rows);
        assert(dists.rows >= queries.rows);
        assert(int(indices.cols) >= knn);
        assert(int(dists.cols) >= knn);


        KNNUniqueResultSet<DistanceType> resultSet(knn);
        for (size_t i = 0; i < queries.rows; i++) {
            resultSet.clear();
            std::fill_n(indices[i], knn, -1);
            std::fill_n(dists[i], knn, std::numeric_limits<DistanceType>::max());
            findNeighbors(resultSet, queries[i], params);
            if (get_param(params,"sorted",true)) resultSet.sortAndCopy(indices[i], dists[i], knn);
            else resultSet.copy(indices[i], dists[i], knn);
        }
    }


    /**
     * Find set of nearest neighbors to vec. Their indices are stored inside
     * the result object.
     *
     * Params:
     *     result = the result object in which the indices of the nearest-neighbors are stored
     *     vec = the vector for which to search the nearest neighbors
     *     maxCheck = the maximum number of restarts (in a best-bin-first manner)
     */
    void findNeighbors(ResultSet<DistanceType>& result, const ElementType* vec, const SearchParams& /*searchParams*/)
    {
        getNeighbors(vec, result);
    }

private:
    /** Defines the comparator on score and index
     */
    typedef std::pair<float, unsigned int> ScoreIndexPair;
    struct SortScoreIndexPairOnSecond
    {
        bool operator()(const ScoreIndexPair& left, const ScoreIndexPair& right) const
        {
            return left.second < right.second;
        }
    };

    /** Fills the different xor masks to use when getting the neighbors in multi-probe LSH
     * @param key the key we build neighbors from
     * @param lowest_index the lowest index of the bit set
     * @param level the multi-probe level we are at
     * @param xor_masks all the xor mask
     */
    void fill_xor_mask(lsh::BucketKey key, int lowest_index, unsigned int level,
                       std::vector<lsh::BucketKey>& xor_masks)
    {
        xor_masks.push_back(key);
        if (level == 0) return;
        for (int index = lowest_index - 1; index >= 0; --index) {
            // Create a new key
            lsh::BucketKey new_key = key | (1 << index);
            fill_xor_mask(new_key, index, level - 1, xor_masks);
        }
    }

    /** Performs the approximate nearest-neighbor search.
     * @param vec the feature to analyze
     * @param do_radius flag indicating if we check the radius too
     * @param radius the radius if it is a radius search
     * @param do_k flag indicating if we limit the number of nn
     * @param k_nn the number of nearest neighbors
     * @param checked_average used for debugging
     */
    void getNeighbors(const ElementType* vec, bool /*do_radius*/, float radius, bool do_k, unsigned int k_nn,
                      float& /*checked_average*/)
    {
        static std::vector<ScoreIndexPair> score_index_heap;

        if (do_k) {
            unsigned int worst_score = std::numeric_limits<unsigned int>::max();
            typename std::vector<lsh::LshTable<ElementType> >::const_iterator table = tables_.begin();
            typename std::vector<lsh::LshTable<ElementType> >::const_iterator table_end = tables_.end();
            for (; table != table_end; ++table) {
                size_t key = table->getKey(vec);
                std::vector<lsh::BucketKey>::const_iterator xor_mask = xor_masks_.begin();
                std::vector<lsh::BucketKey>::const_iterator xor_mask_end = xor_masks_.end();
                for (; xor_mask != xor_mask_end; ++xor_mask) {
                    size_t sub_key = key ^ (*xor_mask);
                    const lsh::Bucket* bucket = table->getBucketFromKey(sub_key);
                    if (bucket == 0) continue;

                    // Go over each descriptor index
                    std::vector<lsh::FeatureIndex>::const_iterator training_index = bucket->begin();
                    std::vector<lsh::FeatureIndex>::const_iterator last_training_index = bucket->end();
                    DistanceType hamming_distance;

                    // Process the rest of the candidates
                    for (; training_index < last_training_index; ++training_index) {
                        hamming_distance = distance_(vec, dataset_[*training_index], dataset_.cols);

                        if (hamming_distance < worst_score) {
                            // Insert the new element
                            score_index_heap.push_back(ScoreIndexPair(hamming_distance, training_index));
                            std::push_heap(score_index_heap.begin(), score_index_heap.end());

                            if (score_index_heap.size() > (unsigned int)k_nn) {
                                // Remove the highest distance value as we have too many elements
                                std::pop_heap(score_index_heap.begin(), score_index_heap.end());
                                score_index_heap.pop_back();
                                // Keep track of the worst score
                                worst_score = score_index_heap.front().first;
                            }
                        }
                    }
                }
            }
        }
        else {
            typename std::vector<lsh::LshTable<ElementType> >::const_iterator table = tables_.begin();
            typename std::vector<lsh::LshTable<ElementType> >::const_iterator table_end = tables_.end();
            for (; table != table_end; ++table) {
                size_t key = table->getKey(vec);
                std::vector<lsh::BucketKey>::const_iterator xor_mask = xor_masks_.begin();
                std::vector<lsh::BucketKey>::const_iterator xor_mask_end = xor_masks_.end();
                for (; xor_mask != xor_mask_end; ++xor_mask) {
                    size_t sub_key = key ^ (*xor_mask);
                    const lsh::Bucket* bucket = table->getBucketFromKey(sub_key);
                    if (bucket == 0) continue;

                    // Go over each descriptor index
                    std::vector<lsh::FeatureIndex>::const_iterator training_index = bucket->begin();
                    std::vector<lsh::FeatureIndex>::const_iterator last_training_index = bucket->end();
                    DistanceType hamming_distance;

                    // Process the rest of the candidates
                    for (; training_index < last_training_index; ++training_index) {
                        // Compute the Hamming distance
                        hamming_distance = distance_(vec, dataset_[*training_index], dataset_.cols);
                        if (hamming_distance < radius) score_index_heap.push_back(ScoreIndexPair(hamming_distance, training_index));
                    }
                }
            }
        }
    }

    /** Performs the approximate nearest-neighbor search.
     * This is a slower version than the above as it uses the ResultSet
     * @param vec the feature to analyze
     */
    void getNeighbors(const ElementType* vec, ResultSet<DistanceType>& result)
    {
        typename std::vector<lsh::LshTable<ElementType> >::const_iterator table = tables_.begin();
        typename std::vector<lsh::LshTable<ElementType> >::const_iterator table_end = tables_.end();
        for (; table != table_end; ++table) {
            size_t key = table->getKey(vec);
            std::vector<lsh::BucketKey>::const_iterator xor_mask = xor_masks_.begin();
            std::vector<lsh::BucketKey>::const_iterator xor_mask_end = xor_masks_.end();
            for (; xor_mask != xor_mask_end; ++xor_mask) {
                size_t sub_key = key ^ (*xor_mask);
                const lsh::Bucket* bucket = table->getBucketFromKey((lsh::BucketKey)sub_key);
                if (bucket == 0) continue;

                // Go over each descriptor index
                std::vector<lsh::FeatureIndex>::const_iterator training_index = bucket->begin();
                std::vector<lsh::FeatureIndex>::const_iterator last_training_index = bucket->end();
                DistanceType hamming_distance;

                // Process the rest of the candidates
                for (; training_index < last_training_index; ++training_index) {
                    // Compute the Hamming distance
                    hamming_distance = distance_(vec, dataset_[*training_index], (int)dataset_.cols);
                    result.addPoint(hamming_distance, *training_index);
                }
            }
        }
    }

    /** The different hash tables */
    std::vector<lsh::LshTable<ElementType> > tables_;

    /** The data the LSH tables where built from */
    Matrix<ElementType> dataset_;

    /** The size of the features (as ElementType[]) */
    unsigned int feature_size_;

    IndexParams index_params_;

    /** table number */
    unsigned int table_number_;
    /** key size */
    unsigned int key_size_;
    /** How far should we look for neighbors in multi-probe LSH */
    unsigned int multi_probe_level_;

    /** The XOR masks to apply to a key to get the neighboring buckets */
    std::vector<lsh::BucketKey> xor_masks_;

    Distance distance_;
};
}

#endif //OPENCV_FLANN_LSH_INDEX_H_