kdtree.cpp 8.4 KB
Newer Older
wester committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                        Intel License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2008, Xavier Delacour, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of Intel Corporation may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

// 2008-05-13, Xavier Delacour <xavier.delacour@gmail.com>

#include "precomp.hpp"

#if !defined _MSC_VER || defined __ICL || _MSC_VER >= 1300

#include "_kdtree.hpp"
#include "_featuretree.h"

class CvKDTreeWrap : public CvFeatureTree {
  template <class __scalartype, int __cvtype>
  struct deref {
    typedef __scalartype scalar_type;
    typedef double accum_type;

    CvMat* mat;
    deref(CvMat* _mat) : mat(_mat) {
      assert(CV_ELEM_SIZE1(__cvtype) == sizeof(__scalartype));
    }
    scalar_type operator() (int i, int j) const {
      return *((scalar_type*)(mat->data.ptr + i * mat->step) + j);
    }
  };

#define dispatch_cvtype(mat, c) \
    switch (CV_MAT_DEPTH((mat)->type)) { \
    case CV_32F: \
      { typedef CvKDTree<int, deref<float, CV_32F> > tree_type; c; break; } \
    case CV_64F: \
      { typedef CvKDTree<int, deref<double, CV_64F> > tree_type; c; break; } \
    default: assert(0); \
    }

  CvMat* mat;
  void* data;

  template <class __treetype>
  void find_nn(const CvMat* d, int k, int emax, CvMat* results, CvMat* dist) {
    __treetype* tr = (__treetype*) data;
    const uchar* dptr = d->data.ptr;
    uchar* resultsptr = results->data.ptr;
    uchar* distptr = dist->data.ptr;
    typename __treetype::bbf_nn_pqueue nn;

    assert(d->cols == tr->dims());
    assert(results->rows == d->rows);
    assert(results->rows == dist->rows);
    assert(results->cols == k);
    assert(dist->cols == k);

    for (int j = 0; j < d->rows; ++j)
    {
      const typename __treetype::scalar_type* dj = (const typename __treetype::scalar_type*) dptr;

      int* resultsj = (int*) resultsptr;
      double* distj = (double*) distptr;
      tr->find_nn_bbf(dj, k, emax, nn);

      assert((int)nn.size() <= k);
      for (unsigned int i = 0; i < nn.size(); ++i)
      {
        *resultsj++ = *nn[i].p;
        *distj++ = nn[i].dist;
      }
      std::fill(resultsj, resultsj + k - nn.size(), -1);
      std::fill(distj, distj + k - nn.size(), 0);

      dptr += d->step;
      resultsptr += results->step;
      distptr += dist->step;
    }
  }

  template <class __treetype>
  int find_ortho_range(CvMat* bounds_min, CvMat* bounds_max,
           CvMat* results) {
    int rn = results->rows * results->cols;
    std::vector<int> inbounds;
    assert(CV_MAT_DEPTH(mat->type) == CV_32F || CV_MAT_DEPTH(mat->type) == CV_64F);
    ((__treetype*)data)->find_ortho_range((typename __treetype::scalar_type*)bounds_min->data.ptr,
             (typename __treetype::scalar_type*)bounds_max->data.ptr,
             inbounds);
    std::copy(inbounds.begin(),
        inbounds.begin() + std::min((int)inbounds.size(), rn),
        (int*) results->data.ptr);
    return (int)inbounds.size();
  }

  CvKDTreeWrap(const CvKDTreeWrap& x);
  CvKDTreeWrap& operator= (const CvKDTreeWrap& rhs);
public:
  CvKDTreeWrap(CvMat* _mat) : mat(_mat) {
    // * a flag parameter should tell us whether
    // * (a) user ensures *mat outlives *this and is unchanged,
    // * (b) we take reference and user ensures mat is unchanged,
    // * (c) we copy data, (d) we own and release data.

    std::vector<int> tmp(mat->rows);
    for (unsigned int j = 0; j < tmp.size(); ++j)
      tmp[j] = j;

    dispatch_cvtype(mat, data = new tree_type
        (&tmp[0], &tmp[0] + tmp.size(), mat->cols,
         tree_type::deref_type(mat)));
  }
  ~CvKDTreeWrap() {
    dispatch_cvtype(mat, delete (tree_type*) data);
  }

  int dims() {
    int d = 0;
    dispatch_cvtype(mat, d = ((tree_type*) data)->dims());
    return d;
  }
  int type() {
    return mat->type;
  }

  void FindFeatures(const CvMat* desc, int k, int emax, CvMat* results, CvMat* dist) {
    cv::Ptr<CvMat> tmp_desc;

    if (desc->cols != dims())
      CV_Error(CV_StsUnmatchedSizes, "desc columns be equal feature dimensions");
    if (results->rows != desc->rows && results->cols != k)
      CV_Error(CV_StsUnmatchedSizes, "results and desc must be same height");
    if (dist->rows != desc->rows && dist->cols != k)
      CV_Error(CV_StsUnmatchedSizes, "dist and desc must be same height");
    if (CV_MAT_TYPE(results->type) != CV_32SC1)
      CV_Error(CV_StsUnsupportedFormat, "results must be CV_32SC1");
    if (CV_MAT_TYPE(dist->type) != CV_64FC1)
      CV_Error(CV_StsUnsupportedFormat, "dist must be CV_64FC1");

    if (CV_MAT_TYPE(type()) != CV_MAT_TYPE(desc->type)) {
      tmp_desc = cvCreateMat(desc->rows, desc->cols, type());
      cvConvert(desc, tmp_desc);
      desc = tmp_desc;
    }

    assert(CV_MAT_TYPE(desc->type) == CV_MAT_TYPE(mat->type));
    assert(CV_MAT_TYPE(dist->type) == CV_64FC1);
    assert(CV_MAT_TYPE(results->type) == CV_32SC1);

    dispatch_cvtype(mat, find_nn<tree_type>
        (desc, k, emax, results, dist));
  }
  int FindOrthoRange(CvMat* bounds_min, CvMat* bounds_max,
         CvMat* results) {
    bool free_bounds = false;
    int count = -1;

    if (bounds_min->cols * bounds_min->rows != dims() ||
  bounds_max->cols * bounds_max->rows != dims())
      CV_Error(CV_StsUnmatchedSizes, "bounds_{min,max} must 1 x dims or dims x 1");
    if (CV_MAT_TYPE(bounds_min->type) != CV_MAT_TYPE(bounds_max->type))
      CV_Error(CV_StsUnmatchedFormats, "bounds_{min,max} must have same type");
    if (CV_MAT_TYPE(results->type) != CV_32SC1)
      CV_Error(CV_StsUnsupportedFormat, "results must be CV_32SC1");

    if (CV_MAT_TYPE(bounds_min->type) != CV_MAT_TYPE(type())) {
      free_bounds = true;

      CvMat* old_bounds_min = bounds_min;
      bounds_min = cvCreateMat(bounds_min->rows, bounds_min->cols, type());
      cvConvert(old_bounds_min, bounds_min);

      CvMat* old_bounds_max = bounds_max;
      bounds_max = cvCreateMat(bounds_max->rows, bounds_max->cols, type());
      cvConvert(old_bounds_max, bounds_max);
    }

    assert(CV_MAT_TYPE(bounds_min->type) == CV_MAT_TYPE(mat->type));
    assert(CV_MAT_TYPE(bounds_min->type) == CV_MAT_TYPE(bounds_max->type));
    assert(bounds_min->rows * bounds_min->cols == dims());
    assert(bounds_max->rows * bounds_max->cols == dims());

    dispatch_cvtype(mat, count = find_ortho_range<tree_type>
        (bounds_min, bounds_max,results));

    if (free_bounds) {
      cvReleaseMat(&bounds_min);
      cvReleaseMat(&bounds_max);
    }

    return count;
  }
};

CvFeatureTree* cvCreateKDTree(CvMat* desc) {

  if (CV_MAT_TYPE(desc->type) != CV_32FC1 &&
      CV_MAT_TYPE(desc->type) != CV_64FC1)
    CV_Error(CV_StsUnsupportedFormat, "descriptors must be either CV_32FC1 or CV_64FC1");

  return new CvKDTreeWrap(desc);
}

#endif