imagelogpolprojection.hpp 11.8 KB
Newer Older
wester committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
/*#******************************************************************************
** IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
**
** By downloading, copying, installing or using the software you agree to this license.
** If you do not agree to this license, do not download, install,
** copy or use the software.
**
**
** HVStools : interfaces allowing OpenCV users to integrate Human Vision System models. Presented models originate from Jeanny Herault's original research and have been reused and adapted by the author&collaborators for computed vision applications since his thesis with Alice Caplier at Gipsa-Lab.
** Use: extract still images & image sequences features, from contours details to motion spatio-temporal features, etc. for high level visual scene analysis. Also contribute to image enhancement/compression such as tone mapping.
**
** Maintainers : Listic lab (code author current affiliation & applications) and Gipsa Lab (original research origins & applications)
**
**  Creation - enhancement process 2007-2011
**      Author: Alexandre Benoit (benoit.alexandre.vision@gmail.com), LISTIC lab, Annecy le vieux, France
**
** Theses algorithm have been developped by Alexandre BENOIT since his thesis with Alice Caplier at Gipsa-Lab (www.gipsa-lab.inpg.fr) and the research he pursues at LISTIC Lab (www.listic.univ-savoie.fr).
** Refer to the following research paper for more information:
** Benoit A., Caplier A., Durette B., Herault, J., "USING HUMAN VISUAL SYSTEM MODELING FOR BIO-INSPIRED LOW LEVEL IMAGE PROCESSING", Elsevier, Computer Vision and Image Understanding 114 (2010), pp. 758-773, DOI: http://dx.doi.org/10.1016/j.cviu.2010.01.011
** This work have been carried out thanks to Jeanny Herault who's research and great discussions are the basis of all this work, please take a look at his book:
** Vision: Images, Signals and Neural Networks: Models of Neural Processing in Visual Perception (Progress in Neural Processing),By: Jeanny Herault, ISBN: 9814273686. WAPI (Tower ID): 113266891.
**
** The retina filter includes the research contributions of phd/research collegues from which code has been redrawn by the author :
** _take a look at the retinacolor.hpp module to discover Brice Chaix de Lavarene color mosaicing/demosaicing and the reference paper:
** ====> B. Chaix de Lavarene, D. Alleysson, B. Durette, J. Herault (2007). "Efficient demosaicing through recursive filtering", IEEE International Conference on Image Processing ICIP 2007
** _take a look at imagelogpolprojection.hpp to discover retina spatial log sampling which originates from Barthelemy Durette phd with Jeanny Herault. A Retina / V1 cortex projection is also proposed and originates from Jeanny's discussions.
** ====> more informations in the above cited Jeanny Heraults's book.
**
**                          License Agreement
**               For Open Source Computer Vision Library
**
** Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
** Copyright (C) 2008-2011, Willow Garage Inc., all rights reserved.
**
**               For Human Visual System tools (hvstools)
** Copyright (C) 2007-2011, LISTIC Lab, Annecy le Vieux and GIPSA Lab, Grenoble, France, all rights reserved.
**
** Third party copyrights are property of their respective owners.
**
** Redistribution and use in source and binary forms, with or without modification,
** are permitted provided that the following conditions are met:
**
** * Redistributions of source code must retain the above copyright notice,
**    this list of conditions and the following disclaimer.
**
** * Redistributions in binary form must reproduce the above copyright notice,
**    this list of conditions and the following disclaimer in the documentation
**    and/or other materials provided with the distribution.
**
** * The name of the copyright holders may not be used to endorse or promote products
**    derived from this software without specific prior written permission.
**
** This software is provided by the copyright holders and contributors "as is" and
** any express or implied warranties, including, but not limited to, the implied
** warranties of merchantability and fitness for a particular purpose are disclaimed.
** In no event shall the Intel Corporation or contributors be liable for any direct,
** indirect, incidental, special, exemplary, or consequential damages
** (including, but not limited to, procurement of substitute goods or services;
** loss of use, data, or profits; or business interruption) however caused
** and on any theory of liability, whether in contract, strict liability,
** or tort (including negligence or otherwise) arising in any way out of
** the use of this software, even if advised of the possibility of such damage.
*******************************************************************************/

#ifndef IMAGELOGPOLPROJECTION_H_
#define IMAGELOGPOLPROJECTION_H_

/**
* @class ImageLogPolProjection
* @brief class able to perform a log sampling of an image input (models the log sampling of the photoreceptors of the retina)
* or a log polar projection which models the retina information projection on the primary visual cortex: a linear projection in the center for detail analysis and a log projection of the borders (low spatial frequency motion information in general)
*
* collaboration: Barthelemy DURETTE who experimented the retina log projection
-> "Traitement visuels Bio mimtiques pour la supplance perceptive", internal technical report, May 2005, Gipsa-lab/DIS, Grenoble, FRANCE
*
* * TYPICAL USE:
*
* // create object, here for a log sampling (keyword:RETINALOGPROJECTION): (dynamic object allocation sample)
* ImageLogPolProjection *imageSamplingTool;
* imageSamplingTool = new ImageLogPolProjection(frameSizeRows, frameSizeColumns, RETINALOGPROJECTION);
*
* // init log projection:
* imageSamplingTool->initProjection(1.0, 15.0);
*
* // during program execution, call the log transform applied to a frame called "FrameBuffer" :
* imageSamplingTool->runProjection(FrameBuffer);
* // get output frame and its size:
* const unsigned int logSampledFrame_nbRows=imageSamplingTool->getOutputNBrows();
* const unsigned int logSampledFrame_nbColumns=imageSamplingTool->getOutputNBcolumns();
* const double *logSampledFrame=imageSamplingTool->getSampledFrame();
*
* // at the end of the program, destroy object:
* delete imageSamplingTool;
*
* @author Alexandre BENOIT, benoit.alexandre.vision@gmail.com, LISTIC : www.listic.univ-savoie.fr, Gipsa-Lab, France: www.gipsa-lab.inpg.fr/
* Creation date 2007
*/

//#define __IMAGELOGPOLPROJECTION_DEBUG // used for std output debug information

#include "basicretinafilter.hpp"


namespace cv
{

class ImageLogPolProjection:public BasicRetinaFilter
{
public:

    enum PROJECTIONTYPE{RETINALOGPROJECTION, CORTEXLOGPOLARPROJECTION};

    /**
    * constructor, just specifies the image input size and the projection type, no projection initialisation is done
    * -> use initLogRetinaSampling() or initLogPolarCortexSampling() for that
    * @param nbRows: number of rows of the input image
    * @param nbColumns: number of columns of the input image
    * @param projection: the type of projection, RETINALOGPROJECTION or CORTEXLOGPOLARPROJECTION
    * @param colorMode: specifies if the projection is applied on a grayscale image (false) or color images (3 layers) (true)
    */
    ImageLogPolProjection(const unsigned int nbRows, const unsigned int nbColumns, const PROJECTIONTYPE projection, const bool colorMode=false);

    /**
    * standard destructor
    */
    virtual ~ImageLogPolProjection();

    /**
    * function that clears all buffers of the object
    */
    void clearAllBuffers();

    /**
    * resize retina color filter object (resize all allocated buffers)
    * @param NBrows: the new height size
    * @param NBcolumns: the new width size
    */
    void resize(const unsigned int NBrows, const unsigned int NBcolumns);

    /**
    * init function depending on the projection type
    * @param reductionFactor: the size reduction factor of the ouptup image in regard of the size of the input image, must be superior to 1
    * @param samplingStrenght: specifies the strenght of the log compression effect (magnifying coefficient)
    * @return true if the init was performed without any errors
    */
    bool initProjection(const double reductionFactor, const double samplingStrenght);

    /**
    * main funtion of the class: run projection function
    * @param inputFrame: the input frame to be processed
        * @param colorMode: the input buffer color mode: false=gray levels, true = 3 color channels mode
    * @return the output frame
    */
    std::valarray<float> &runProjection(const std::valarray<float> &inputFrame, const bool colorMode=false);

    /**
    * @return the numbers of rows (height) of the images OUTPUTS of the object
    */
    inline unsigned int getOutputNBrows(){return _outputNBrows;};

    /**
    * @return the numbers of columns (width) of the images OUTPUTS of the object
    */
    inline unsigned int getOutputNBcolumns(){return _outputNBcolumns;};

    /**
    * main funtion of the class: run projection function
    * @param size: one of the input frame initial dimensions to be processed
    * @return the output frame dimension
    */
    inline static unsigned int predictOutputSize(const unsigned int size, const double reductionFactor){return (unsigned int)((double)size/reductionFactor);};

    /**
    * @return the output of the filter which applies an irregular Low Pass spatial filter to the imag input (see function
    */
    inline const std::valarray<float> &getIrregularLPfilteredInputFrame() const {return _irregularLPfilteredFrame;};

    /**
    * function which allows to retrieve the output frame which was updated after the "runProjection(...) function BasicRetinaFilter::runProgressiveFilter(...)
    * @return the projection result
    */
    inline const std::valarray<float> &getSampledFrame() const {return _sampledFrame;};

    /**
    * function which allows gives the tranformation table, its size is (getNBrows()*getNBcolumns()*2)
    * @return the transformation matrix [outputPixIndex_i, inputPixIndex_i, outputPixIndex_i+1, inputPixIndex_i+1....]
    */
    inline const std::valarray<unsigned int> &getSamplingMap() const {return _transformTable;};

    inline double getOriginalRadiusLength(const double projectedRadiusLength){return _azero/(_alim-projectedRadiusLength*2.0/_minDimension);};

    //    unsigned int getInputPixelIndex(const unsigned int ){ return  _transformTable[index*2+1]};

private:
    PROJECTIONTYPE _selectedProjection;

    // size of the image output
    unsigned int _outputNBrows;
    unsigned int _outputNBcolumns;
    unsigned int _outputNBpixels;
    unsigned int _outputDoubleNBpixels;
    unsigned int _inputDoubleNBpixels;

    // is the object able to manage color flag
    bool _colorModeCapable;
    // sampling strenght factor
    double _samplingStrenght;
    // sampling reduction factor
    double _reductionFactor;

    // log sampling parameters
    double _azero;
    double _alim;
    double _minDimension;

    // template buffers
    std::valarray<float>_sampledFrame;
    std::valarray<float>&_tempBuffer;
    std::valarray<unsigned int>_transformTable;

    std::valarray<float> &_irregularLPfilteredFrame; // just a reference for easier understanding
    unsigned int _usefullpixelIndex;

    // init transformation tables
    bool _computeLogProjection();
    bool _computeLogPolarProjection();

    // specifies if init was done correctly
    bool _initOK;
    // private init projections functions called by "initProjection(...)" function
    bool _initLogRetinaSampling(const double reductionFactor, const double samplingStrenght);
    bool _initLogPolarCortexSampling(const double reductionFactor, const double samplingStrenght);

    ImageLogPolProjection(const ImageLogPolProjection&);
    ImageLogPolProjection& operator=(const ImageLogPolProjection&);

};

}
#endif /*IMAGELOGPOLPROJECTION_H_*/