epnp.cpp 16.1 KB
Newer Older
wester committed
1
#include <iostream>
wester committed
2
using namespace std;
wester committed
3 4 5
#include "precomp.hpp"
#include "epnp.h"

wester committed
6
epnp::epnp(const cv::Mat& cameraMatrix, const cv::Mat& opoints, const cv::Mat& ipoints)
wester committed
7 8 9 10 11 12 13 14 15 16 17 18 19 20
{
  if (cameraMatrix.depth() == CV_32F)
      init_camera_parameters<float>(cameraMatrix);
  else
    init_camera_parameters<double>(cameraMatrix);

  number_of_correspondences = std::max(opoints.checkVector(3, CV_32F), opoints.checkVector(3, CV_64F));

  pws.resize(3 * number_of_correspondences);
  us.resize(2 * number_of_correspondences);

  if (opoints.depth() == ipoints.depth())
  {
    if (opoints.depth() == CV_32F)
wester committed
21
      init_points<cv::Point3f,cv::Point2f>(opoints, ipoints);
wester committed
22
    else
wester committed
23
      init_points<cv::Point3d,cv::Point2d>(opoints, ipoints);
wester committed
24 25
  }
  else if (opoints.depth() == CV_32F)
wester committed
26
    init_points<cv::Point3f,cv::Point2d>(opoints, ipoints);
wester committed
27
  else
wester committed
28
    init_points<cv::Point3d,cv::Point2f>(opoints, ipoints);
wester committed
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

  alphas.resize(4 * number_of_correspondences);
  pcs.resize(3 * number_of_correspondences);

  max_nr = 0;
  A1 = NULL;
  A2 = NULL;
}

epnp::~epnp()
{
    if (A1)
        delete[] A1;
    if (A2)
        delete[] A2;
}

void epnp::choose_control_points(void)
{
  // Take C0 as the reference points centroid:
  cws[0][0] = cws[0][1] = cws[0][2] = 0;
  for(int i = 0; i < number_of_correspondences; i++)
    for(int j = 0; j < 3; j++)
      cws[0][j] += pws[3 * i + j];

  for(int j = 0; j < 3; j++)
    cws[0][j] /= number_of_correspondences;


  // Take C1, C2, and C3 from PCA on the reference points:
  CvMat * PW0 = cvCreateMat(number_of_correspondences, 3, CV_64F);

a  
Kai Westerkamp committed
61
  double pw0tpw0[3 * 3], dc[3], uct[3 * 3];
wester committed
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
  CvMat PW0tPW0 = cvMat(3, 3, CV_64F, pw0tpw0);
  CvMat DC      = cvMat(3, 1, CV_64F, dc);
  CvMat UCt     = cvMat(3, 3, CV_64F, uct);

  for(int i = 0; i < number_of_correspondences; i++)
    for(int j = 0; j < 3; j++)
      PW0->data.db[3 * i + j] = pws[3 * i + j] - cws[0][j];

  cvMulTransposed(PW0, &PW0tPW0, 1);
  cvSVD(&PW0tPW0, &DC, &UCt, 0, CV_SVD_MODIFY_A | CV_SVD_U_T);

  cvReleaseMat(&PW0);

  for(int i = 1; i < 4; i++) {
    double k = sqrt(dc[i - 1] / number_of_correspondences);
    for(int j = 0; j < 3; j++)
      cws[i][j] = cws[0][j] + k * uct[3 * (i - 1) + j];
  }
}

void epnp::compute_barycentric_coordinates(void)
{
  double cc[3 * 3], cc_inv[3 * 3];
  CvMat CC     = cvMat(3, 3, CV_64F, cc);
  CvMat CC_inv = cvMat(3, 3, CV_64F, cc_inv);

  for(int i = 0; i < 3; i++)
    for(int j = 1; j < 4; j++)
      cc[3 * i + j - 1] = cws[j][i] - cws[0][i];

  cvInvert(&CC, &CC_inv, CV_SVD);
  double * ci = cc_inv;
  for(int i = 0; i < number_of_correspondences; i++) {
    double * pi = &pws[0] + 3 * i;
    double * a = &alphas[0] + 4 * i;

    for(int j = 0; j < 3; j++)
      a[1 + j] =
  ci[3 * j    ] * (pi[0] - cws[0][0]) +
  ci[3 * j + 1] * (pi[1] - cws[0][1]) +
  ci[3 * j + 2] * (pi[2] - cws[0][2]);
    a[0] = 1.0f - a[1] - a[2] - a[3];
  }
}

void epnp::fill_M(CvMat * M,
      const int row, const double * as, const double u, const double v)
{
  double * M1 = M->data.db + row * 12;
  double * M2 = M1 + 12;

  for(int i = 0; i < 4; i++) {
    M1[3 * i    ] = as[i] * fu;
    M1[3 * i + 1] = 0.0;
    M1[3 * i + 2] = as[i] * (uc - u);

    M2[3 * i    ] = 0.0;
    M2[3 * i + 1] = as[i] * fv;
    M2[3 * i + 2] = as[i] * (vc - v);
  }
}

void epnp::compute_ccs(const double * betas, const double * ut)
{
  for(int i = 0; i < 4; i++)
    ccs[i][0] = ccs[i][1] = ccs[i][2] = 0.0f;

  for(int i = 0; i < 4; i++) {
    const double * v = ut + 12 * (11 - i);
    for(int j = 0; j < 4; j++)
      for(int k = 0; k < 3; k++)
  ccs[j][k] += betas[i] * v[3 * j + k];
  }
}

void epnp::compute_pcs(void)
{
  for(int i = 0; i < number_of_correspondences; i++) {
    double * a = &alphas[0] + 4 * i;
    double * pc = &pcs[0] + 3 * i;

    for(int j = 0; j < 3; j++)
      pc[j] = a[0] * ccs[0][j] + a[1] * ccs[1][j] + a[2] * ccs[2][j] + a[3] * ccs[3][j];
  }
}

wester committed
148
void epnp::compute_pose(cv::Mat& R, cv::Mat& t)
wester committed
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
{
  choose_control_points();
  compute_barycentric_coordinates();

  CvMat * M = cvCreateMat(2 * number_of_correspondences, 12, CV_64F);

  for(int i = 0; i < number_of_correspondences; i++)
    fill_M(M, 2 * i, &alphas[0] + 4 * i, us[2 * i], us[2 * i + 1]);

  double mtm[12 * 12], d[12], ut[12 * 12];
  CvMat MtM = cvMat(12, 12, CV_64F, mtm);
  CvMat D   = cvMat(12,  1, CV_64F, d);
  CvMat Ut  = cvMat(12, 12, CV_64F, ut);

  cvMulTransposed(M, &MtM, 1);
  cvSVD(&MtM, &D, &Ut, 0, CV_SVD_MODIFY_A | CV_SVD_U_T);
  cvReleaseMat(&M);

  double l_6x10[6 * 10], rho[6];
  CvMat L_6x10 = cvMat(6, 10, CV_64F, l_6x10);
  CvMat Rho    = cvMat(6,  1, CV_64F, rho);

  compute_L_6x10(ut, l_6x10);
  compute_rho(rho);

  double Betas[4][4], rep_errors[4];
  double Rs[4][3][3], ts[4][3];

  find_betas_approx_1(&L_6x10, &Rho, Betas[1]);
  gauss_newton(&L_6x10, &Rho, Betas[1]);
  rep_errors[1] = compute_R_and_t(ut, Betas[1], Rs[1], ts[1]);

  find_betas_approx_2(&L_6x10, &Rho, Betas[2]);
  gauss_newton(&L_6x10, &Rho, Betas[2]);
  rep_errors[2] = compute_R_and_t(ut, Betas[2], Rs[2], ts[2]);

  find_betas_approx_3(&L_6x10, &Rho, Betas[3]);
  gauss_newton(&L_6x10, &Rho, Betas[3]);
  rep_errors[3] = compute_R_and_t(ut, Betas[3], Rs[3], ts[3]);

  int N = 1;
  if (rep_errors[2] < rep_errors[1]) N = 2;
  if (rep_errors[3] < rep_errors[N]) N = 3;

wester committed
193 194
  cv::Mat(3, 1, CV_64F, ts[N]).copyTo(t);
  cv::Mat(3, 3, CV_64F, Rs[N]).copyTo(R);
wester committed
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
}

void epnp::copy_R_and_t(const double R_src[3][3], const double t_src[3],
      double R_dst[3][3], double t_dst[3])
{
  for(int i = 0; i < 3; i++) {
    for(int j = 0; j < 3; j++)
      R_dst[i][j] = R_src[i][j];
    t_dst[i] = t_src[i];
  }
}

double epnp::dist2(const double * p1, const double * p2)
{
  return
    (p1[0] - p2[0]) * (p1[0] - p2[0]) +
    (p1[1] - p2[1]) * (p1[1] - p2[1]) +
    (p1[2] - p2[2]) * (p1[2] - p2[2]);
}

double epnp::dot(const double * v1, const double * v2)
{
  return v1[0] * v2[0] + v1[1] * v2[1] + v1[2] * v2[2];
}

void epnp::estimate_R_and_t(double R[3][3], double t[3])
{
  double pc0[3], pw0[3];

  pc0[0] = pc0[1] = pc0[2] = 0.0;
  pw0[0] = pw0[1] = pw0[2] = 0.0;

  for(int i = 0; i < number_of_correspondences; i++) {
    const double * pc = &pcs[3 * i];
    const double * pw = &pws[3 * i];

    for(int j = 0; j < 3; j++) {
      pc0[j] += pc[j];
      pw0[j] += pw[j];
    }
  }
  for(int j = 0; j < 3; j++) {
    pc0[j] /= number_of_correspondences;
    pw0[j] /= number_of_correspondences;
  }

a  
Kai Westerkamp committed
241
  double abt[3 * 3], abt_d[3], abt_u[3 * 3], abt_v[3 * 3];
wester committed
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
  CvMat ABt   = cvMat(3, 3, CV_64F, abt);
  CvMat ABt_D = cvMat(3, 1, CV_64F, abt_d);
  CvMat ABt_U = cvMat(3, 3, CV_64F, abt_u);
  CvMat ABt_V = cvMat(3, 3, CV_64F, abt_v);

  cvSetZero(&ABt);
  for(int i = 0; i < number_of_correspondences; i++) {
    double * pc = &pcs[3 * i];
    double * pw = &pws[3 * i];

    for(int j = 0; j < 3; j++) {
      abt[3 * j    ] += (pc[j] - pc0[j]) * (pw[0] - pw0[0]);
      abt[3 * j + 1] += (pc[j] - pc0[j]) * (pw[1] - pw0[1]);
      abt[3 * j + 2] += (pc[j] - pc0[j]) * (pw[2] - pw0[2]);
    }
  }

  cvSVD(&ABt, &ABt_D, &ABt_U, &ABt_V, CV_SVD_MODIFY_A);

  for(int i = 0; i < 3; i++)
    for(int j = 0; j < 3; j++)
      R[i][j] = dot(abt_u + 3 * i, abt_v + 3 * j);

  const double det =
    R[0][0] * R[1][1] * R[2][2] + R[0][1] * R[1][2] * R[2][0] + R[0][2] * R[1][0] * R[2][1] -
    R[0][2] * R[1][1] * R[2][0] - R[0][1] * R[1][0] * R[2][2] - R[0][0] * R[1][2] * R[2][1];

  if (det < 0) {
    R[2][0] = -R[2][0];
    R[2][1] = -R[2][1];
    R[2][2] = -R[2][2];
  }

  t[0] = pc0[0] - dot(R[0], pw0);
  t[1] = pc0[1] - dot(R[1], pw0);
  t[2] = pc0[2] - dot(R[2], pw0);
}

void epnp::solve_for_sign(void)
{
  if (pcs[2] < 0.0) {
    for(int i = 0; i < 4; i++)
      for(int j = 0; j < 3; j++)
  ccs[i][j] = -ccs[i][j];

    for(int i = 0; i < number_of_correspondences; i++) {
      pcs[3 * i    ] = -pcs[3 * i];
      pcs[3 * i + 1] = -pcs[3 * i + 1];
      pcs[3 * i + 2] = -pcs[3 * i + 2];
    }
  }
}

double epnp::compute_R_and_t(const double * ut, const double * betas,
           double R[3][3], double t[3])
{
  compute_ccs(betas, ut);
  compute_pcs();

  solve_for_sign();

  estimate_R_and_t(R, t);

  return reprojection_error(R, t);
}

double epnp::reprojection_error(const double R[3][3], const double t[3])
{
  double sum2 = 0.0;

  for(int i = 0; i < number_of_correspondences; i++) {
    double * pw = &pws[3 * i];
    double Xc = dot(R[0], pw) + t[0];
    double Yc = dot(R[1], pw) + t[1];
    double inv_Zc = 1.0 / (dot(R[2], pw) + t[2]);
    double ue = uc + fu * Xc * inv_Zc;
    double ve = vc + fv * Yc * inv_Zc;
    double u = us[2 * i], v = us[2 * i + 1];

    sum2 += sqrt( (u - ue) * (u - ue) + (v - ve) * (v - ve) );
  }

  return sum2 / number_of_correspondences;
}

// betas10        = [B11 B12 B22 B13 B23 B33 B14 B24 B34 B44]
// betas_approx_1 = [B11 B12     B13         B14]

void epnp::find_betas_approx_1(const CvMat * L_6x10, const CvMat * Rho,
             double * betas)
{
a  
Kai Westerkamp committed
333
  double l_6x4[6 * 4], b4[4];
wester committed
334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
  CvMat L_6x4 = cvMat(6, 4, CV_64F, l_6x4);
  CvMat B4    = cvMat(4, 1, CV_64F, b4);

  for(int i = 0; i < 6; i++) {
    cvmSet(&L_6x4, i, 0, cvmGet(L_6x10, i, 0));
    cvmSet(&L_6x4, i, 1, cvmGet(L_6x10, i, 1));
    cvmSet(&L_6x4, i, 2, cvmGet(L_6x10, i, 3));
    cvmSet(&L_6x4, i, 3, cvmGet(L_6x10, i, 6));
  }

  cvSolve(&L_6x4, Rho, &B4, CV_SVD);

  if (b4[0] < 0) {
    betas[0] = sqrt(-b4[0]);
    betas[1] = -b4[1] / betas[0];
    betas[2] = -b4[2] / betas[0];
    betas[3] = -b4[3] / betas[0];
  } else {
    betas[0] = sqrt(b4[0]);
    betas[1] = b4[1] / betas[0];
    betas[2] = b4[2] / betas[0];
    betas[3] = b4[3] / betas[0];
  }
}

// betas10        = [B11 B12 B22 B13 B23 B33 B14 B24 B34 B44]
// betas_approx_2 = [B11 B12 B22                            ]

void epnp::find_betas_approx_2(const CvMat * L_6x10, const CvMat * Rho,
             double * betas)
{
a  
Kai Westerkamp committed
365
  double l_6x3[6 * 3], b3[3];
wester committed
366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
  CvMat L_6x3  = cvMat(6, 3, CV_64F, l_6x3);
  CvMat B3     = cvMat(3, 1, CV_64F, b3);

  for(int i = 0; i < 6; i++) {
    cvmSet(&L_6x3, i, 0, cvmGet(L_6x10, i, 0));
    cvmSet(&L_6x3, i, 1, cvmGet(L_6x10, i, 1));
    cvmSet(&L_6x3, i, 2, cvmGet(L_6x10, i, 2));
  }

  cvSolve(&L_6x3, Rho, &B3, CV_SVD);

  if (b3[0] < 0) {
    betas[0] = sqrt(-b3[0]);
    betas[1] = (b3[2] < 0) ? sqrt(-b3[2]) : 0.0;
  } else {
    betas[0] = sqrt(b3[0]);
    betas[1] = (b3[2] > 0) ? sqrt(b3[2]) : 0.0;
  }

  if (b3[1] < 0) betas[0] = -betas[0];

  betas[2] = 0.0;
  betas[3] = 0.0;
}

// betas10        = [B11 B12 B22 B13 B23 B33 B14 B24 B34 B44]
// betas_approx_3 = [B11 B12 B22 B13 B23                    ]

void epnp::find_betas_approx_3(const CvMat * L_6x10, const CvMat * Rho,
             double * betas)
{
a  
Kai Westerkamp committed
397
  double l_6x5[6 * 5], b5[5];
wester committed
398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
  CvMat L_6x5 = cvMat(6, 5, CV_64F, l_6x5);
  CvMat B5    = cvMat(5, 1, CV_64F, b5);

  for(int i = 0; i < 6; i++) {
    cvmSet(&L_6x5, i, 0, cvmGet(L_6x10, i, 0));
    cvmSet(&L_6x5, i, 1, cvmGet(L_6x10, i, 1));
    cvmSet(&L_6x5, i, 2, cvmGet(L_6x10, i, 2));
    cvmSet(&L_6x5, i, 3, cvmGet(L_6x10, i, 3));
    cvmSet(&L_6x5, i, 4, cvmGet(L_6x10, i, 4));
  }

  cvSolve(&L_6x5, Rho, &B5, CV_SVD);

  if (b5[0] < 0) {
    betas[0] = sqrt(-b5[0]);
    betas[1] = (b5[2] < 0) ? sqrt(-b5[2]) : 0.0;
  } else {
    betas[0] = sqrt(b5[0]);
    betas[1] = (b5[2] > 0) ? sqrt(b5[2]) : 0.0;
  }
  if (b5[1] < 0) betas[0] = -betas[0];
  betas[2] = b5[3] / betas[0];
  betas[3] = 0.0;
}

void epnp::compute_L_6x10(const double * ut, double * l_6x10)
{
  const double * v[4];

  v[0] = ut + 12 * 11;
  v[1] = ut + 12 * 10;
  v[2] = ut + 12 *  9;
  v[3] = ut + 12 *  8;

  double dv[4][6][3];

  for(int i = 0; i < 4; i++) {
    int a = 0, b = 1;
    for(int j = 0; j < 6; j++) {
      dv[i][j][0] = v[i][3 * a    ] - v[i][3 * b];
      dv[i][j][1] = v[i][3 * a + 1] - v[i][3 * b + 1];
      dv[i][j][2] = v[i][3 * a + 2] - v[i][3 * b + 2];

      b++;
      if (b > 3) {
  a++;
  b = a + 1;
      }
    }
  }

  for(int i = 0; i < 6; i++) {
    double * row = l_6x10 + 10 * i;

    row[0] =        dot(dv[0][i], dv[0][i]);
    row[1] = 2.0f * dot(dv[0][i], dv[1][i]);
    row[2] =        dot(dv[1][i], dv[1][i]);
    row[3] = 2.0f * dot(dv[0][i], dv[2][i]);
    row[4] = 2.0f * dot(dv[1][i], dv[2][i]);
    row[5] =        dot(dv[2][i], dv[2][i]);
    row[6] = 2.0f * dot(dv[0][i], dv[3][i]);
    row[7] = 2.0f * dot(dv[1][i], dv[3][i]);
    row[8] = 2.0f * dot(dv[2][i], dv[3][i]);
    row[9] =        dot(dv[3][i], dv[3][i]);
  }
}

void epnp::compute_rho(double * rho)
{
  rho[0] = dist2(cws[0], cws[1]);
  rho[1] = dist2(cws[0], cws[2]);
  rho[2] = dist2(cws[0], cws[3]);
  rho[3] = dist2(cws[1], cws[2]);
  rho[4] = dist2(cws[1], cws[3]);
  rho[5] = dist2(cws[2], cws[3]);
}

void epnp::compute_A_and_b_gauss_newton(const double * l_6x10, const double * rho,
          const double betas[4], CvMat * A, CvMat * b)
{
  for(int i = 0; i < 6; i++) {
    const double * rowL = l_6x10 + i * 10;
    double * rowA = A->data.db + i * 4;

    rowA[0] = 2 * rowL[0] * betas[0] +     rowL[1] * betas[1] +     rowL[3] * betas[2] +     rowL[6] * betas[3];
    rowA[1] =     rowL[1] * betas[0] + 2 * rowL[2] * betas[1] +     rowL[4] * betas[2] +     rowL[7] * betas[3];
    rowA[2] =     rowL[3] * betas[0] +     rowL[4] * betas[1] + 2 * rowL[5] * betas[2] +     rowL[8] * betas[3];
    rowA[3] =     rowL[6] * betas[0] +     rowL[7] * betas[1] +     rowL[8] * betas[2] + 2 * rowL[9] * betas[3];

    cvmSet(b, i, 0, rho[i] -
     (
      rowL[0] * betas[0] * betas[0] +
      rowL[1] * betas[0] * betas[1] +
      rowL[2] * betas[1] * betas[1] +
      rowL[3] * betas[0] * betas[2] +
      rowL[4] * betas[1] * betas[2] +
      rowL[5] * betas[2] * betas[2] +
      rowL[6] * betas[0] * betas[3] +
      rowL[7] * betas[1] * betas[3] +
      rowL[8] * betas[2] * betas[3] +
      rowL[9] * betas[3] * betas[3]
      ));
  }
}

void epnp::gauss_newton(const CvMat * L_6x10, const CvMat * Rho, double betas[4])
{
  const int iterations_number = 5;

a  
Kai Westerkamp committed
507
  double a[6*4], b[6], x[4];
wester committed
508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624
  CvMat A = cvMat(6, 4, CV_64F, a);
  CvMat B = cvMat(6, 1, CV_64F, b);
  CvMat X = cvMat(4, 1, CV_64F, x);

  for(int k = 0; k < iterations_number; k++)
  {
    compute_A_and_b_gauss_newton(L_6x10->data.db, Rho->data.db,
    betas, &A, &B);
    qr_solve(&A, &B, &X);
    for(int i = 0; i < 4; i++)
    betas[i] += x[i];
  }
}

void epnp::qr_solve(CvMat * A, CvMat * b, CvMat * X)
{
  const int nr = A->rows;
  const int nc = A->cols;

  if (max_nr != 0 && max_nr < nr)
  {
    delete [] A1;
    delete [] A2;
  }
  if (max_nr < nr)
  {
    max_nr = nr;
    A1 = new double[nr];
    A2 = new double[nr];
  }

  double * pA = A->data.db, * ppAkk = pA;
  for(int k = 0; k < nc; k++)
  {
    double * ppAik1 = ppAkk, eta = fabs(*ppAik1);
    for(int i = k + 1; i < nr; i++)
    {
      double elt = fabs(*ppAik1);
      if (eta < elt) eta = elt;
      ppAik1 += nc;
    }
    if (eta == 0)
    {
      A1[k] = A2[k] = 0.0;
      //cerr << "God damnit, A is singular, this shouldn't happen." << endl;
      return;
    }
    else
    {
      double * ppAik2 = ppAkk, sum2 = 0.0, inv_eta = 1. / eta;
      for(int i = k; i < nr; i++)
      {
        *ppAik2 *= inv_eta;
        sum2 += *ppAik2 * *ppAik2;
        ppAik2 += nc;
      }
      double sigma = sqrt(sum2);
      if (*ppAkk < 0)
      sigma = -sigma;
      *ppAkk += sigma;
      A1[k] = sigma * *ppAkk;
      A2[k] = -eta * sigma;
      for(int j = k + 1; j < nc; j++)
      {
        double * ppAik = ppAkk, sum = 0;
        for(int i = k; i < nr; i++)
        {
          sum += *ppAik * ppAik[j - k];
          ppAik += nc;
        }
        double tau = sum / A1[k];
        ppAik = ppAkk;
        for(int i = k; i < nr; i++)
        {
          ppAik[j - k] -= tau * *ppAik;
          ppAik += nc;
        }
      }
    }
    ppAkk += nc + 1;
  }

  // b <- Qt b
  double * ppAjj = pA, * pb = b->data.db;
  for(int j = 0; j < nc; j++)
  {
    double * ppAij = ppAjj, tau = 0;
    for(int i = j; i < nr; i++)
    {
      tau += *ppAij * pb[i];
      ppAij += nc;
    }
    tau /= A1[j];
    ppAij = ppAjj;
    for(int i = j; i < nr; i++)
    {
      pb[i] -= tau * *ppAij;
      ppAij += nc;
    }
    ppAjj += nc + 1;
  }

  // X = R-1 b
  double * pX = X->data.db;
  pX[nc - 1] = pb[nc - 1] / A2[nc - 1];
  for(int i = nc - 2; i >= 0; i--)
  {
    double * ppAij = pA + i * nc + (i + 1), sum = 0;

    for(int j = i + 1; j < nc; j++)
    {
      sum += *ppAij * pX[j];
      ppAij++;
    }
    pX[i] = (pb[i] - sum) / A2[i];
  }
}